Archive for the ‘Teknik’ Category

Nyckelharpa i barnstorlek justering

03/06/2019

Jag har byggt en barnharpa med mensuren 340 mm i huvudsak efter Sören Åhkers ritningar. Sören är en trevlig person som det är lätt att kommunicera med och samtidigt en av de nyckelhapsbyggare som regelbundet har fått mycket gott betyg för sina harpor. Avsikten med bygget är att undersöka om det är lättare eller svårare för en fiolspelman att spela på en mindre harpa där mensuren ligger betydligt närmare fiolens. Personligen har jag störts av att spela på en fullstorleksharpa då det gäller att spela i det högre registret d.v.s. det register där man på en fiol skulle spela på E-strängen. Klaviaturens storlek på en stor harpa leder till stora handrörelser motsvarande lägesspel på en stor altfiol.

IMGP5971.JPG

Bilden visar den nya barnharpan i relation till min fullstora harpa. Klaviaturen är ca. 50 mm kortare än klaviaturen på den stora harpan. En fullvuxen hand bör då ha betydligt bättre räckvidd på den lilla harpan är på en harpa av full storlek.

Följande skede i byggprocessen blir nu att i små steg börja justera in harpan. Min uppfattning om instrument är att ett bra instrument är ett instrument där man har lyckats eliminera så många fel som möjligt.  Jag hoppas kunna dokumentera felsökningsprocessen med ljud och bild i ett antal kommande artiklar.

Vilka fel har jag noterat i detta skede

Mina finstämmare för Cello (3/4 – 4/4 storlek) är för små. Detta gör att rörelsen i finstämmaren blir mycket liten innan strängens ändkula rör i stränghållaren. Min tanke är att jag byter till större finstämmare (storlek 4/4 cello) då de levereras efter någon vecka. Alternativet är att korta av stränghållaren en aning. Byte av finstämmare uppfattar jag vara enklare och mera rationellt i detta skede då stränghållaren redan är ytbehandlad. Det var naturligtvis en miss från min sida att inte i tid upptäcka att 3/4-cello finstämmarna egentligen är för små. Jag kan leva med detta problem en kort tid.

A-strängen fungerar i princip rätt bra men tonen är inte så brilliant som jag skulle vilja ha den. Detta justeras i ett senare skede.

D-strängen (jag stämmer C-G-D-A räknat från basen inte CGCA vilket är traditionellt) marginellt användbar men den tänder dåligt. Justeringen av G-strängen kommer också att påverka D-strängen positivt. Orsaken till att jag stämmer CGDA är att fingersättningen då är lika som på fiol vilket gör det lättare att spela både nyckelharpa och fiol.

G-strängen tänder mycket dåligt. Mycket ”murrig” och ”sträv” i tonen.

Det första steget blir att justera ljudpinnens plats för att hitta möjligast god ton utan andra justeringar. Det här steget är viktigt eftersom man vet att ljudet kan förändras kraftigt till följd av väldigt små ljudpinneförflyttningar. Jag vill inte göra oåterkalleliga justeringar på instrumentet innan ljudpinnejustering har gjorts eftersom senare förflyttningar av ljudpinnen annars kan leda till behov av ytterligare helt onödigt slipande.

Jag kommer att börja med att försöka få G-strängen att fungera korrekt och senare justera D- och A-strängarna. Det är möjligt att A-strängen fixar sig själv då man får G- och D-strängarna att fungera.

Det första steget i justeringen av G-strängen blir (om det behövs … vilket är sannolikt) att kontrollera och efterjustera kanalen mellan halsen och basbjälkens övre ända. På en fiol blir tonen väldigt torr och sträv om motsvarande område är för tjockt/styvt. Den här barnharpans nyckellåda har konstruerats så att det finns plats att slipa den kritiska övre basbjälkekanalen. Utrymmet mellan lock och nyckellåda i min fullstora harpa är för litet för att tillåta efterjustering genom inre slipning. Bara den lilla harpan fås spelbar så kan jag plocka isär den stora harpan och modifiera den så att den effektivt kan efterjusteras.

Om erfarenheterna från fioler går att applicera så kan det också vara värt att tunna ut området strax ovanför bassidans f-hål. Dessa förändringar bör tydligt förbättra G-strängens respons.

Om D-strängen efter justeringen av G-strängen blir för svag (relativt sett) så brukar man kunna förstärka tonen genom att slipa området några centimeter ner från bassidans  f-hål.

Också stallet kan justeras men min erfarenhet är att inre graduering ger betydligt starkare effekt än stallsjustering. Om andan faller på justerar jag eventuellt också stallet då harpan i övrigt börjar vara OK.

Fioltrimning … Oooops!!!

01/05/2019

Jag har i ungefär två års tid jobbat med att optimera en kinesisk fiol som jag idag kallar min Klezmerfiol d.v.s. fiolen används för spelning av klezmermusik.

Jag ropade in fiolen på e-bay för $111 + frakt d.v.s. totalpriset inklusive moms och frakt kom att ligga på ca. 200 Euro eller grovt översatt till svenska kronor 2000 sek. Fiolen köptes ursprungligen för att den skulle fungera som demonstrationsobjekt för inre justering för fiolbyggarna i finland (Suomen viulunrakentajat ry.) då vi hade en utställning gällande fiolbygge och justering i samband med Folklandia kryssningen 2018.

Jag har specialiserat mig på efterjustering av fioler genom justering av lockets och bottenplattans tjocklek något som kallas re-graduering. Efterjusteringen sker så att fiolen hela tiden är spelbar och justeringen sker genom slipning av kritiska punkter från insidan i små steg. Fiolen slipas varefter den provspelas och därefter slipas på nytt utgående från det akustiska resultat man uppnådde.

Fiolen fixades så att vi som teknisk demonstration hela tiden inför publik bytte ljudpinnen mot en ljudpinne med korrekta dimensioner och korrekt skärning. De kinesiska metallsträngarna byttes mot Pirastro Tonica som inte är speciellt bra men de är billiga jämfört med t.ex. dominant eller Eva Pirazzi. Därefter justerade vi ljudpinnens plats för bästa möjliga ljud. Resultatet var en i princip spelbar fiol d.v.s. fiolen hade inga externt synliga direkta byggfel men ljudet var nasalt och tråkigt. I likhet med de flesta billiga fioler så var basen hes och torr.

Om man tittar på fiolens spektrum så ser man att torrheten beror på att basens grundtoner på g-strängen saknas i princip helt och hållet. Den mänskliga hjärnan hör raden av harmoniska övertoner som produceras av instrumentet och hjärnan lägger själv till den saknade bastonen … men detta görs aldrig fullt ut vilket gör att att de låga tonerna inte är fylliga utan ”torra”.

Torrheten kan enkelt justeras bort genom att göra området mellan basbjälkens övre ända och halsklossen tunnare. Slipning på detta område ger en extemt kraftig effekt och man bör gå fram i små steg säg 10-15 slipdrag fram/tillbaka mellan provspelningar eftersom resultatet om man slipar för mycket kan bli en mörk ”råmande” (tänk ko) ton som inte är önskvärd. Kinesen krävde (extremt) mycket slipande här för att få tonen på plats.

Efter justeringen av basen justeras bottenplattan så att den klingar d.v.s. den får inte vara stum. De viktigaste områdena brukar vara tvärs över locket strax ovanför nederändans kloss och strax nedanför halsklossen.  Det gäller här att vara försiktig så att man inte slipar för mycket uppe vid halsen eftersom detta kan ge upphov till en vargton i trakten av A…H.

Om hur man gör Oooops!

Jah har en längre tid uppfattat att fiolen fungerar ungefär som jag vill ha den. En fiolspelande vän, yrkesviolinist,  som använder axelstöd (vilket jag normalt inte gör) kom på besök och jag lånade honom mitt axelstöd. Jag fick egentligen bara lovord över fiolen men då jag själv spelade fiolen med axelstöd så tyckte jag att fiolen lät lite torr i mina öron (axelstödet påverkar ofta fiolens ljud helt hörbart genom att axelstödet klämmer ihot fiolen från sidorna). Jag tänkte inte vidare på orsaken till problemet … det är ju lätt att åtgärda genom lite slipning.

Torrheten är ju inget problem att åtgärda så jag slipade lite till vid kanalen mellan basbjälke och halskloss vilket löste problemet. På morgonen nästa dag lät fiolen fortfarande bra men jag upptäckte att jag hade slipat ett litet hål vi halskanalen (se bild, mycket pinsamt natuligtvis 😉 ).

Den intressanta frågan uppstod då hur man fixar detta problem på ett snyggt sätt utan att skära loss locket? Min lösning blev att jag skar en liten träflisa från ett lockämne för fiol som jag råkade ha på lager. Jag formade spånan så att den är något större än hålet varefter jag limmade träflisan (svagt) på en supermagnet. Bilden är tagen innan flisan/spånan har rundats/jämnats med sandpapper. Notera att träspånan är limmad på en liten supermagnet som är något mindre än själva spånan. Den stora supermagneten som syns i bilden är en hjälpyta vid bearbetningen av träbiten.

Med hjälp av en yttre magnet kunde jag nu föra lappen till hålet .

Lappens kant kan nu ses vid hålets högra kant under de yttre hjälpmagneterna. Jag tvingade in lim från yttre sidan (flödigt) och flyttade lappen av och an så att den skulle få lim jämnt över hela ytan. Därefter flyttade jag lappen till önskat läge och lämnade kvar en magnet som limpress (den yttre limpressen kan vara precis den slipmagnet som gjorde hålet).

”Limpressen” är på plats.

Då limmet hade torkat tillräckligt tvättade jag bort överloppslimmet från utsidan. Hjälpmagneten på vilken lappen hade limmats togs bort genom att använda en lite större magnet som hammare för att slå loss hjälpmagneten från lappen, detta fungerade helt problemfritt.

Lappen är nu på plats utan ytterligare skador. Lappen är vänd så att ådringen i stort sett går vinkelrätt mot lockets ådring.

Följande steg blev nu att fixa skadan så att den är möjligast osynlig. Eftersom fiolen är åldrad på konstgjord väg beslöt jag att inte försöka återställa lackytan till ursprungligt skick … i stället ”smutsade” jag lappen med mjuk blyertspenna varefter jag drog ett lager brunt betslack över stället. Resultatet är att lappen ser ut ungefär som övriga skador på locket vilket var avsikten med övningen.

Reparationen påverkar inte ljudet på fiolen hörbart men det är självklart att det här instrumentet inte skall slipas mera. Orsaken till att jag slipade hål på locket var att ändan på basbjälken styrde slipmagneten exakt över ett väldigt begränsat område. I framtiden måste jag tänka på att inte vid slipningen ligga och stödja mot ändan av basbjälken. Slipningen skall alltså medvetet spridas ut över en större yta.

Om någon i Sverige är intresserad av att provspela instrumentet så kommer det att finnas på Ekebyholm den 23-27.6 2019 där jag kommer att vara deltagare.

Hur kan denna reparationsteknik användas

Det kan av olika skäl uppstå sprickor i ett fiollock. I vissa fall är sprickan så liten att det inte lönar sig att skära loss locket för reparation utan sprickan limmas och sprickan dras ihop med något lämpligt verktyg. Problemet är dock att en lagning av denna typ sällan blir beständig om man inte limmar ett eller flera såkallade frimärken över den limmade sprickan. Ovanstående lagning visar hur man enkelt kan limma ett frimärke över en spricka i en fiol utan att ta loss locket.

Äggplotter, bygg själv!

05/02/2019

Det är alltid kul att lära sig något nytt och att tvingas motionera de små grå cellerna innanför det grå håret med problemlösning och felsökning av något man aldrig har lekt med tidigare.

Det är snart påsk igen, som baha’i ser jag fram mot baha’i nyår Naw Ruz … i båda fallen har ägg en plats i måltiderna i anslutning till dessa högtider. Det är för övrigt intressant att se hur många sedvänjor med en ursprungligen Zoroastrisk bakgrund (från det antika Persien) lever kvar i olika sedvänjor från Afghanistan till Spanien. Sedvänjorna har helt enkelt modifierats så att de passar ihop med den lokala religionen varefter man kan glömma varifrån sedvänjorna kommer.

I den Nordiska traditionen hör ägg, ofta snyggt målade, till påsktraditionen. Man färgar ägg på olika sätt. Själv minns jag hur man kokade ägg tillsammans med lämpliga växter för att ge äggen en trevlig färg. Senare har jag många gånger ritat figurer på ägg tillsammans med barnen. Vad är då naturligare än att använda moderna hjälpmedel för att göra mera avancerade utsmyckningar t.ex. i form av geometriska mönster som är alltför arbetsdryga eller komplicerade för att göras för hand.

Videon ovan visar en Ägg skrivare som dock ser relativt komplicerad ut 🙂 . Det här projektet använder dock betydligt bättre, och dyrare stegmotorer än vad jag använde.

Jag hittade en variant som kan skrivas ut med 3d skrivare och som såg snygg och väl genomtänkt ut. Bygget av den varianten och problem i anslutning till detta bygge beskrivs i den här artikeln. Jag utgick från den här äggplottern:

Vad behöver jag för projektet

Filerna som behövs för 3d utskrift av mekaniken hittar man på thingiverse i form av en stl-fil. Stl är en beskrivning av hur de mekaniska delar som skall skrivas ut med 3d skrivare ser ut. Innan skrivaren kan skriva ut komponenten måste stl-filen vidarebehandlas av ett lämpligt program som skär upp föremålet i en serie skikt  som 3d skrivaren sedan kan rita ut skikt för skikt och på såsätt långsamt bygga upp hela det föremål som skrivs ut. Jag använder programmet slic3r för att vidarebehandla stl-filen. Skrivarprogrammet jag använder är Repetier-Host V1.6.2.

Problem #1

Min 3d skrivare klarar av att skriva ut föremål med dimensionerna ca. 200x200x200 mm³.  Det visade sig att alla delar till Ägg skrivaren fanns i samma fil som kräver en betydligt större skrivare än den jag har. Alternativen är då att antingen hitta någon firma med en skrivare med tillräckligt stor byggyta … eller att modifiera stl-filen så att bitarna kan skrivas ut på min skrivare. Jag valde det senare alternativet.

Då jag själv konstruerar föremål som skall skrivas ut på 3d skrivare så använder jag programspråket openscad för att designa föremålen. Jag kan enkelt läsa in en stl-fil i openscad:

storbit1

Jag använder helt enkelt kommandot import( … ); för att läsa in stl-filen som ett enda stort föremål. Därefter använder jag kommandot difference() på den inlästa filen och använder stora lådor (klossar) som skär bort de delar jag  för tillfället inte vill se. Det spelar inte någon roll på vilket område på skärmen den kvarvarande delen finns, den centreras automatiskt av skrivaren.

Jag klippte söner stl-filen i tre olika föremålsgrupper d.v.s. skalet blev två olika bitar och de små mekaniska delarna blev en egen grupp. De olika beskurna delarna skrevs sedan ut separat. Jag antar att motsvarande funktionalitet finns i de flesta CAD-program som stöder 3d utskrift.

Utöver plastdelarna behövde jag två stycken små kullager, skruvar i olika dimensioner som jag klippte till lämpliga längder med hjälp av en Abico-tång. Lager hittade jag på en lokal järnaffär och skruvar har jag på lager i olika dimensioner.

Hopplockning av styrelektroniken

Skalet är konstruerat för en Arduino UNO med stor USB (typ B) kontakt. Jag har olika varianter av processorkortet på lager så jag valde helt enkelt en som fysiskt var kompatibel med en Arduino Uno. Processorkortet kostar kanske sex dollar på ebay.

Ett litet RC-servo av lämplig storlek hittade jag i miljonlådan (Tower Pro micro servo 9g). Ett servo kan beställas från ebay för någon dollar.

Jag hittade stegmotorn inklusive drivkort ULN2003 hos en elektronikaffär i Åbo och beställde den över nätet (https://www.triopak.fi/fi).

Jag monterade styrelektroniken utan att ännu bygga in den i det 3d utskrivna skalet. Jag ville enkelt kunna testa servot och stegmotorerna utan att ideligen öppna skalet på apparaten. Det började nu dyka upp problem …

Problem #2

Jag kunde utan problem kompilera drivprogrammet och ladda ner det på Arduinokortet. Då jag försökte få kontakt med äggskrivaren genom programmet Inkscape dök det upp problem. Ritprogrammet Inkscape för vilket det finns en tilläggsdel för att driva äggskrivaren verkade inte över huvudtaget kunna se Arduinoprocessorn.

Problemet visade sig bero på att då jag via min dator försöker komma i kontakt med Arduinon så skickar datorn via USB en DTR signal (data terminal ready) som på UNO är kopplad till Reset d.v.s. UNOn startade om då jag öppnade kommunikationen mot UNO. I sig är detta inget problem, jag behöver bara vänta på att Arduino Uno startar om varefter linjen är öppen och bör fungera i fortsättningen.

På en linuxdator söker Inkscape efter äggskrivaren genom att öppna en serieförbindelse i taget varefter programmet väntar på att UNO startar om varefter Inkscape skriver ‘v\r\n’ d.v.s. ber om äggskrivarens versionsinformation. Om svaret kommer inom en vettig tid så vet Inkscape var äggskrivaren finns och kan börja skicka kommandon till skrivaren. Orsaken till problemet är att en Linuxdator har tillgång till en stor mängd potentiella serieportar ocxh det krävs lång tid för att beta av alla portar … så lång tid att jag gav upp 😉 . Den lösning jag fastnade för var att läsa av om Arduino Uno var kopplad till min dator. Detta kan kontrolleras med hjälp av kommandot:

lsusb

Bus 002 Device 005: ID 248a:8367
Bus 002 Device 004: ID 046d:c52b Logitech, Inc. Unifying Receiver
Bus 002 Device 060: ID 1a86:7523 QinHeng Electronics HL-340 USB-Serial adapter
Bus 002 Device 002: ID 1a40:0101 Terminus Technology Inc. Hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Man kan enkelt identifiera den egna anslutna USB-enheten i mitt fall Arduino Uno-kortet genom att först ge kommandot lsusb utan att kortet är anslutet varefter man ansluter kortet och ger kommandot på nytt. Den nya rad som dyker upp innehåller den kod jag vill ha. Jag har märkt ut den aktuella raden med fet stil ovan.

Kommandot listar alla USB anslutna apparater på datorn. I princip har UNOn en unik identifikationsadress. Jag modifierade Inkscapes sökprogram så att det först tittade efter min specifika Arduino UNO innan den försöker söka igenom alla andra serieportar. Äggskrivaren hittas nu snabbt och bekvämt utan problem.

Eggbot tilläggsdelen för Inkscape finns i en linuxdator i katalogen:

~/.config/inkscape/extensions

Programmet jag modifierade var: ~/.config/inkscape/extensions/ebb_serial.py .

Jag lade in mitt Arduino UNOs id i raden:

if port[2].startswith(”USB VID:PID=1A86:7523”):

Koden 1A86:7523 fick jag från lsusb-kommandot ovan.

Problemet med att Arduino UNO startar om då en yttre enhet försöker ansluta över USB kan elimineras genom att bryta en förbindelse på kretskortet om Arduinon är en äkta Arduino Uno. I mitt fall är det fråga om en kopia från vilken man har lämnat bort den här egenskapen. Nackdelen med att kapa ifrågavarande hopptråd är att programmeringen blir besvärligare. Inom ca. en sekund efter att man börjar ladda upp program till Arduinon måste man trycka på reset på Arduinokortet … reset-tryckningen har eliminerats i Arduino Uno genom att låta DTR sköta saken men då dyker det upp ovanstående problem.

Problem #3

Min ena stegmotor av typen 28BYJ-48 var defekt. Stegmotorn råkade vara kopplad till armen som styrde pennan. Något kugghjul inne i motorns kuggväxel (64 ggr nedväxling) är defekt vilket leder till att motorn stoppar i ett specifikt läge.  Jag bytte ut motorn varefter det fungerade.

Problem #4

Då jag testade stegmotorerna med en verklig bild genom Inkscape så visade det sig att motorerna gick relativt varma och de snurrade endast i en riktning. Orsaken var att instruktionerna för hur styrsignalerna fron Arduino skulle kopplas till drivkortet var felaktiga. In/ut pinnarna 2,3,4,5 styr IN1, IN2, IN3 och IN4 på stegmotorns drivkort. Det visade sig att jag för korrekt funktion måste kasta om pinnarna 3 och 4. Kopplingen till stegmotorn blev då:

pin 2 –> IN1

pin4 –> IN2

pin3 –> IN3

pin5 –> IN4

På mitsvarande sätt måste pinnarna för den andra stegmotorn kopplas:

pin 8 –> IN1 (drivkort #2)

pin10–> IN2

pin9 –> IN3

pin11–>IN4

IMGP0849_mod.JPG

Bilden visar processorkortet Artduino UNO till vänster (blått) samt två stegmotordrivkort (vita) baserade på kretsen ULN2003. Drivkorten är inget stegmotorkontrollkort utan uttryckligen en serie transistorer som kan kopplas på och av under processorkontroll. Arduinin kontrollerar bitmönstret för varje steg.  För att en stegmotor skall stega måste en serie bestämda bitmönster genereras som genererar önskade magnetfält inne i stegmotorn och bitmönstrena måste skickas till motorn i korrekt ordning och ordningsföljden byter om man vill backa …

En stegmotorkontroller behöver egentligen endast två signaler steg och riktning en kontrollkrets kan oftast också justera strömmen genom stegmotorn vilket kan användas till bl.a. att justera motorns effekt och motorns temperatur. En riktig stegmotorkontroller innehåller egen intelligens och den genererar själv korrekta bitmönster för stegning framåt och bakåt. Det finns avancerade stegmotorkontrollers som också på egen hand klarar av att accelerera och decelerera. Man kan inte abrupt ändra stegfrkvensen på en stegmotor eftersom den då kan tappa bort steg vilket blir pinsamt om maskinen som styrs inte mäter den exakta positionen … vilket i allmänhet inte görs om man använder stegmotorer.

De fyrpoliga sladdarnas ledare i mitten (på de vita korten eller på arduino men inte båda) måste kastas om för att stegmotorn skall stega i båda riktningarna.

Efter att ett antal gånger ha plockat ihop äggskrivaren och sedan isär igen började grundfunktionerna se korrekta ut. Hålen i de 3d utskrivna mekaniska bitarna tenderade att vara för små vilket krävde filande samt varmluftsblåsare. Då ett hål nästan är korrekt kan man värma komponenten varefter man pressar på den med milt våld varvid passningen blir exakt. Någon bit värmde jag så mycket att den ändrade form vilket löstes genom att skriva ut en ny bit.

Ägghållaren vid rotationsstegmotorn använder en O-ring som friktionsyta mot ägget. Vid den fria axeländan som är kullagrad finns motsvarande något mindre O-ringsyta som trycks mot ägget med hjälp av en metallfjäder. Metallfjäderns längd kan justeras med hjälp av en mellanbricka som kan skrivas ut med 3d skrivare i olika tjocklekar. Tanken  är att ägget skall vara stadigt monterat men man får inte trycka så hårt att ägget går sönder. Det är extremt viktigt att ägget inte rör sig medan äggskrivaren skriver eftersom detta dödar all precision. Mer om injustering senare i artikeln. Jag är inte övertygad om att min konstreuktion som använder O-ringar nödvändigtvis fungerar speciellt bra. Tiden får utvisa och då måste något annat system prövas.

IMGP0858_mod.JPG

Pennans drivmekanik. Den lilla stegmotorn till höger i bilden vrider pennan kring centrum av ägget. Vi ser  den vita servoarmen som används för att höja/sänka pennan. Pennan trycks mot ägget av dess egen tyngd. Vi ser o-ringen  vid rotationsmotorn som fungerar som friktionsyta för att hålla ägget på plats.  Den fjäderbelastade hållaren för äggets spetsiga ända syns nere till höger.

IMGP0857_mod.JPG

Äggskrivaren sedd från en annan vinkel. Observera att pennans lyftservo är monterat på den vertikala armen som är monterad på stegmotorn i mitten.

Arbetsprocess för att rita på ett ägg

Vi använder programmet Inkscape som är ett öppet källkodsprogram som finns att ladda ner gratis för Windows, Masc och Linux. Jag kör sedan många år endast Linux och jag har inte ens Windows installerad på mina två arbetsmaskiner. Nedanstående är inte någon ingående instruktion för hur man använder Inkscape. Det finns goda instruktioner för detta om man googlar Inkscape.

Då vi monterar ägget är det viktigt att det är möjligast väl centrerat vilket vi kan kontrollera t.ex genom att utan penna vrida ägget ett varv. Detta kan vi enkelt göra genom att skapa en Inkscape bild med storleken 4070×800. Från dokumentets vänstra kant till dokumentets högra kant dras en rät linje mitt på dokumentet. Använd View/Zoom Out så att hela bildytan kan ses då strecket ritas från kant till kant.  Om vi utan penna ”skriver ut” detta dokument så kommer ägget att vridas 360 grader runt sin axel. Genom att hålla ett lämpligt föremål som referens mot skrivarbasen kan vi kolla om avståndet mellan referensföremålet hålls konstant genom varvet eller om avståndet varierar. Om vi sder betydande variationer lönar det sig att försiktigt flytta ägget vid någondera ändan så att felet blir så litet som möjligt. Det lönar sig att experimentera.

OneTurnInkscape

En hjälpbild som består av endast ett enda streck tvärs över bilden kan användas till att kontrollera att ägget roterar precis ett varv och att det sitter korrekt monterat utan att kasta av och an då det roterar.

Under Extensions/Eggbot/ hittar vi EggBot control. Med denna kontroll kan vi kontrollera att lyftning/sänkning av penna fungerar samt skriva ut en bild i Inkscape.  Vi börjar med att skriva ut (utan penna) vår räta linje för att kontrollera att ägget är centrerat och att det roterar precis ett varv.

Vi öppnar nu ett nytt dokument antingen så att vi skapar det själv eller så att vi laddar ner ett mönster vi gillar från nätet. Vi måste nu justera bildens storlek så att den precis fyller hela ägget utan att överlappa. För min skrivare med 28BYJ-48 stegmotorer och ULM2003 styrkretsar skall dokumentets storlek sättas till ungefär 4070(bredd) x 800 (höjd). Den bild vi har läst in kan manuellt justeras till den bredd vi vill ha.

Ett test av utskrift från Inkscape visar att skrivaren i princip fungerar men det är extremt viktigt att:

  • Ägget centreras korrekt så att det inte blir några kast då det roterar
  • Pennan ställs in till lämplig höjd så att den ritar också vid ytterlägena
  • Pennan ställs i mittläge innan ritningen påbörjas. Det finns annars risk för att pennan slår i ägghållaren i ändläget vilket kan lösgöra ägget delvis så att det gungar av och an.

Provritning gav resultatet nedan vilket inte ännu är så bra.

IMGP0863.JPG

Då man tittar noga på bilden ser man att det är en springa mellan ägget och tjockändans O-ring vilket gör att denna ända av ägget abrupt hoppar av och an med intressanta resultat vid utritningen.  Jag glömde att dra fast skruven som håller pennan vilket ledde till att pennan gungade av och an beroende av pennans rörelseriktning.

Jag kommer att modifiera tjockändans fastsättning för att åtgärda felen. Jag är helt optimistisk på att skrivaren ännu kommer att fungera helt OK.

Tack till alla kända och okända på nätet som har lagt ner mycket arbete på både utveckling av programvara och hårdvara.

Den extremt billiga och samtidigt kompakta stegmotorn 28BYJ-48 är inte bra till följd av att den är utväxlad. Kugghjulen i kuggväxeln är aldrig perfekta och speciellt i en sådan här billig motor så finns det glapp d.v.s. om vi ritar en linje i en rörelseriktning och sedan byter riktning så kommer det att finnas ett obestämt område till följd av glapp. Lösningen skulle vara bättre stegmotorer som inte är utväxlade men detta betyder samtidigt att en stor del av mekaniken måste förnyas. Byter man stegmotorerna så får man dock mycket bättre exakthet vid ritandet.

Modifierad fastsättning av ägget

Jag konstaterade ovan att ägget gungade av och an i upphängningen gjord av O-ringar. Orsaken var att O-ringens dimension i förhållande till ägget blev fel. Ägget låg antagligen delvis direkt mot ändplattan vilket gjorde att det kunde glida sidlänges vilket i sin tur gjorde ritandet mycket inexakt.

Jag hittade röda flaskkorkar av gummi (se bild nedan). I finland är det här traditionella korkar som man speciellt hittar på hösten vid saftningstider. Jag köpte en påse korkar och klippte sönder en som blev en ca. 7 mm djup mjuk ägghållare. Resultatet blev mycket bra och precisionen förbättrades radikalt.

IMGP0883.JPG

Med den modifierade hållaren blir ritandet reproducerbart, räta linjer som går runt hela ägget träffar startpunkten igen efter ett varv … något som inte hände tidigare.

IMGP0882.JPG

Notera den 3d utskrivna pennhållaren. Jag skrev också ut en hållare för tre pennor i vilka pennorna kan förvaras utan kork. Den extra pennadaptern gör det mycket enklare att montera pennerna exakt och lika för alla pennor.

Planerade vidare modifiationer

Det finns fortfarande ett tydligt kännbart glapp i pennans stegmotor till följd av stegmotorns växellåda med utväxlingen 1:64 d.v.s. stegmotorn roterar 64 varv då den utgående axeln roterar ett varv.
Jag beställde en Nema 13 stegmotor som har ungefär samma dimensioner som den nu använda 28BYJ-48 men helt utan utväxling.  Då jag får stegmotorn så planerar jag att först köra den med den existerande drivkretsen och om det fungerar OK så använder jag den. Alternativet är att jag byter ULN2003 drivkortet mot en kontroller av den typ som finns i dagens 3d-skrivare. Exempelvis A4988 eller DRV8825 av vilka jag uppfattar den senare som marginellt bättre.

En stegmotor av annan typ kommer att kräva modifikation av ritarmen d.v.s. jag blir tvungen att designa en egen variantmed något annorlunda dimensioner. Fastsättningen av armen i stegmotoraxeln kommer att säkras med skruv vilket inte är falllet nu.

Beslutar jag mig för att byta ut stegmotorkontrollern så blir jag antagligen tvungen att skriva ut en modifierad bottenplatta eftersom A4988 och DRV8825 saknar skruvhål och därför kräver en annan fastsättning.

Några källor:

Byggbeskrivningen för den här presenterade Egg Painter Mini.

Den ursprungliga EggBot skrivaren.

Mjukvara till äggskrivaren.

Byggbeskrivning i PDF.

 

 

Enkel temperaturlogger

08/01/2019

Jag gjorde för en tid sedan en första preliminär mätning av UHI (Urban Heat Island) d.v.s. värmenedsmutsning av tätorter. Det är självklart att meteorologiska mätstationer som ligger nära eller i tät bebyggelse bör mäta högre temperaturer än stationer som ligger ostörda på landsbygden. De lärda tvistar idag om hur stor inverkan från UHI har på globala uppskattningar av temperaturen och uppskattningarna varierar från i princip ingen alls till några tiondels grader.

Temperaturloggerns upplösning d.v.s. de minsta temperaturskillnaderna den kan detektera är 0.1 grader C.  Sensorns precision d.v.s. felet i förhållande till en välkalibrerad temperaturgivare ligger antagligen på ca. +/- 0.5 grader C.

Jag har ingen aning om hur sensorn driver med tiden och inte heller hur linjär den i verkligheten är (om jag exempelvis vet att sensorn visar rätt vi 20 grader C, hur stort är felet vid +40?). Min gissning är dock att de relativa felen vid temperatursving på några grader är mycket små d.v.s. i storleksordningen +/- 0.1 grad C.

imgp5759

Fig. 1  Den första loggerprototypen. Det 3D-utskrivna skalet är misslyckat men bättre än ingenting. Följande version kommer ur ”ugnen” efter fyra timmar då detta skrivs. Bilden visar temperaturmätning i mitt arbetsrum kväll-natt. temperaturtoppen på nästan en grad är förorsakad av min kroppsvärme.

arbetsrum20190107

Fig. 2  Mätning av temperatur i mitt arbetsrum natten mellan den 7 och 8.1.2019. Rummet är i andra våningen /därav rätt hög temperatur) och det värms endast av datorer, skrivare etc. Det är intressant att notera hur temperaturen stiger med nästan en grad då jag sitter i rummet. En människa torde producera ungefär 200W värme vilket jag uppfattar att man kan se i mätningen. Andningsluften innehåller rätt mycket fukt vilket kan ses i den röda kurvan som är relativ luftfuktighet. Grafen skapades genom att läsa in mätvärdena i LibreOffice Calc i CSV (Comma Separated Values) format. Inläsningen krävde ingen editering av datafilen.

temp_logger_base

Fig. 3  En virtuell bild av stommen till version #2 av den nya lådan till loggern i programmet Repetier-host som jag använder för utskrift. Lådan är konstruerad i programmet openscad. Processorn och skärmen är skyddade men enkelt åtkomliga. I den första versionen kom kretskortet lite för nära lådans inre vägg vilket har åtgärdats här. Likaså modifierade jag öppningarna till USB-kontakten, SD-kortet och anslutningen för signalsladden till sensorn.  I nedre hörnet finns fack för SD-kortet och Bluetooth givaren HC-05. Nära det övre hörnet finns hjälpväggar som fungerar som kraftavlastare för sensorns sladd. Normalt brukar jag behöva tre iterationer för att designen skall bli ungefär vad jag vill ha.

tloggerboxutskrift

Fig. 4  Utskrift av den nya lådan från föregående bild. 3D-skrivaren är en Geeetech I3 kopia på motsvarande Prusa I3 skrivare. Skrivaren är byggd från en byggsats och den fungerar bra. Det krävdes dock en hel del tid, kanske två veckor,  att få allt korrekt injusterat både mekaniskt och mjukvarumässigt. Fördelen med en byggsats är dock att jag inte har några som helst hämningar att fixa eventuella problem eller göra uppgraderingar.  Det här är den bästa leksak jag har gett mig på många år.

imgp5761

Fig. 5  De i temperaturloggern ingående delarna. Från vänster Arduino Mega 2560 (blå). Därefter SD-kortadapter(ljusgrön). Bluetooth adapter HC-05 (vit) och bildskärmen sedd bakifrån (röd).  I den 3D-printade lådans skruvfästen smälts mässingsgängor vilket på sikt är mycket pålitligare än att skruva direkt i plast.

En Arduino Mega som temperaturlogger

En temperaturlogger kan byggas billigt från följande komponenter:

  • Processor Arduino Mega 2560 (ca. $10 ebay)
  • Display 480×320 pixlar innehåller ofta SD-korthållare ($5-$10 ebay). Kontrollera att displayen är kompatibel med en Arduino Mega och att den inte är gjord för en Arduino Uno (SD-kortet kan vara svårt att få att fungera om kortet är för en UNO). Det lönars ig inte att använda en Arduino Uno som logger om bildskärm används … minnet räcker inte till.
  • Bluetooth adapter HC-05 ($5 på ebay)
  • Någon typ av låda för att skydda loggern jag designade en egen låda och skrev ut den med 3D-skrivare.
  • Temperatur/fuktighetsgivare DHT22 ($3 på ebay). Det finns kombinationsgivare som också mäter lufttryck. Jag byter eventuellt senare ut DHT22 givaren mot en givare som mäter temperatur, luftfuktighet och lufttryck.
  • Ett minneskort t.ex. 8 GByte (det minsta man hittar i en normal butik)
  • Två stycken 1 kohms motstånd

Utöver ovanstående behövs lödkolv, gärna en universalvoltmätare, tröd, lödtenn o.s.v. normala hobbytillbehör för elektronikhobby.

Egenskaper hos den färdiga loggern

Loggern mäter och lagrar temperatur och luftfuktighet på ett SD minneskort. Mätta data plottas i grafisk form till bildskärmen. Mätintervallat kan ställas från ca. 1s till timmar mellan mätningarna. Bildskärmen kan skalas enligt behov d.v.s. det minsta och det största värdet p skärmen kan ställas via kommandon.

Jag kommer att lägga till funktionalitet i loggern senare. Det är enkelt att lägga till mätning av andra parametrar om det behövs. Jag har för närvarande endast en temperatursensor. Tanken är att lägga till en annan sensor så att jag kan mäta utetemperaturen nära bilens tak och ca. 10 cm högre upp. Det bör vara möjligt att få en uppfattning om hur mycket värmen i bilen stör mätningarna genom att placera två termometrar på olika höjd i luftflödet.

Kontroll/styrning av loggern

Loggern skriver ut mätningar till processorns USB serieport samt till Bluetooth modulen HC-05. Via båda dessa kanaler kan man ge kommandon åt loggern.

Bäst kontrollerar man loggern via t.ex. en mobiltelefon eller en lämplig läsplatta med bluetooth.  En lämplig App för kontroll är appen ”Bluetooth Terminal” som man hittar på Google Play. Appen är gratis (det finns säkert många andra som också fungerar). Då man kopplar på strömmen till loggern och då Bluetooth är aktiv i telefonen så kommer det att dyka upp en enhet HC-05. Om det i omgivningen finns flera HC-05 enheter så känner man igen dem på deras unika id (hexadecimal sträng av bokstäver/siffror). Då anslutningen har lyckats så kan man testa förbindelsen med kommandot ”help” som visar vilka kommandon systemet känner.

Följande kommandon finns för närvarande (kommandot ”help” ger en lista över kommandon):

COMMANDS:
help      --> This help.
start     --> Start logging
stop      --> Stop logging
sdstart   --> Re-initialize SD
sdstop    --> SD write stopped
tlog      --> Print tlog.txt
tdata     --> Print tdata.txt
ls        --> List SD files
ctlog     --> Erase tlog.txt
ctdata    --> Erase tdata.txt
!         --> Comment to tlog.txt.
logint    --> Logging interval secs.
ymin      --> Set plot ymin
ymax      --> Set plot ymax
ytic      --> Set plot ytic
replot    --> Clear screen and replot

Innan man börjar logga lönar det sig att ställa in skärmen:

ymin

Säller in y-axelns minsta värde. Om vi t.ex. vet att temperaturen ute ligger på ca. +5 och vi kommer att göra en körning som kräver några timmar så kan vi sannolikt ställa in skärmen på t.ex. 0 grader C. Commandot är då ”ymin 0” utan citationsteckn.

ymax

På motsvarande sätt ställer vi in det största värdet som ryms påskärmen t.ex. 15 grader C. Kommandor är ”ymax 15”.

logint

Kommandot ställer in intervallet mellan mätningar uttryckt i sekunder. Om vi t.ex. vill logga en gång per minut så ger vi kommandot ”logint 60”.  Intervallet är inte helt exakt. Den löpande tiden d.v.s. tidpunkten för mätningen i sekunder sedan start är relativt noggrann.

replot

Kommandot ”replot” raderar skärmen och ritar ut koordinatsystemet på nytt. Räknaren som håller reda på mätningens ordningsnummer sätts till ett (1).

start

Starta loggningen med de parametrar systemet för närvarande känner (ymin, ymax och logintervall).

stop

Stoppa loggning.  Loggning kan startas på nytt med ”start”.

sdstart

SD minneskortet initialiseras t.ex. om man har tagit ur kortet och kopierat innehållet till en dator ellr om minneskortet har bytts. Samma initialisering görs då loggern startas d.v.s. det är inte nödvändigt att ge kommandot ”sdstart” då loggern startas.

sdstop

Stoppar skrivning till SD minneskortet. Det är säkrast att ge kommandor ”sdstop” innan man tar ur SD-kortet eller innan man stänger av strömmen till loggern. Om man råkar rycka ur kortet precis då loggern skriver data till minnet så kan SD minnet förstöras. På motsvarande sätt kan kortet förstöras om man stänger av strömmen medan loggern skriver till kortet.  Risken för skador på minneskortet är naturligtvis störst om loggningsintervallet är kort. Användning av ”sdstop” förhindrar skador på SD-kortet eftersom skrivning till kortet stoppas.

tlog

Lista (skriv ut) hela loggfilen. Man kan skriva kommentarer till loggfilen genom att börja en kommentar med kommandot ”!”. Den maximala längden på en rad är satt till 50 tecken.

Exempel:

! Sommarö, start

Strängen lagras som sådan i filen tlog.txt men den förses med en tidsstämpel som motsvarar tiden för mätningarna. Man kan alltså senare direkt relatera kommentaren till specifika mätningar.

tdata

Skriv ut alla mätdata i mätfilen till både USB serieporten och till Bluetooth (HC-05). Ett sätt att överföra data till en annan apparat är att lista mätdata till serieterminalen och sedan på den kontrollerande enheten kopiera data från terminalen till en fil. Användning av tdata gör att loggningen inte behöver avbrytas och man behöver inte ta ut minneskortet.

ctlog

Radera loggfilen. Allt innehåll i loggfilen försvinner.

ctdata

Radera innehållet i datafilen. Allt innehåll i datafilen försvinner.

Koppling av termometer/luftfuktighetsmätare till loggern

Sensorns signalstift kopplas till Arduino Mega A15.

Sensorns strömmatning VCC koplas till 5V bredvid Arduinons stift 22.

Sensorns jord kopplas till Arduinons jord bredvid Arduinons stift 52.

Koppling av Bluetooth HC-05

Bluetooth VCC går till 5V på Arduino Mega (bredvid VCC för temperatursensorn). Till samma stift kopplas också VCC för SD-kortet.

Bluetooth jord GND kopplas till GND på Arduino (nära A15).

Bluetooth TXD kopplas till A13.

Bluetooth RXD kopplas via spänningsdelare t.ex. så att signalen från Arduino leds till jord via två 1 kohms motstånd kopplade i serie. Signalen till Bluetooth modulen tas ut mellan motstånden. Problemet är att HC-05 RXD är gjord för 3.3V spänningsnivå medan Arduinon använder 5V nivåer. HC-05 kan fungera en tid utan spänniungsdelare men den blir inte långlivad om den kopplas direkt.

Koppling av SD-kort

SD-korthållaren bör vara av en som har inbyggd spänningsregulator och 5V tålig. Orsaken är att SD minnet är konstruerat för endast 3.3V. Ansluter man ett oskyddat SD-kort till ett 5V system så kommer minnet att förstöras snabbt (jfr. HC-05 problemet).

SD 5V kollas till Arduino 5V (kombinerat med HC-05).

SD jord (GND) kopplas till Arduino GND (kombinerat med HC-05),

SD MOSI kopplas till Arduino Mega 2560 ICSP pin 1 (MISO)

SD MOSI kopplas till Arduino Mega 2560 ICSP pin 4 (MOSI)

SD SCK kopplas till Arduino Mega 2560 ICSP pin 3 (SCK)

SD CS kopplas till Arduino Mega 2560 dig. io pin 48

LCD skärmen

LCD skärmen är en billig kinesisk skärm designad för en Arduino UNO. Skärmen har inbyggd SD-kortläsare men problemet är att SPI gränssnittets signaler i en Arduino mega ligger påannan plats (ICSP konnektorn). Jag uppfattade det inte som mödan värt att tjuvkoppla mig runt problemet så jag använder en separat SD-kortläsare.

Problemet med många billiga kinesiska skärmar är att de är totalt ”namnlösa” och det finns ofta ingen information om vilken drivkrets de använder. Drivkretsens typ avgör vilket bibliotek jag måste använda på Arduinon för att skriva till skärmen. Vill jag has en skärm som är enkel att använda för t.ex. mätändamål så vill jag inte ha en skärm som sitter som en skäld ovanpå Arduinon och samtidigt förhindrar åmst till arduinons in/ut kontakter.

Skärmen jag har använt i det här projektet använder UTFT APIN f skärmaccess. Många kinesioska skärmar använder kontrollkretsen ILI9xxx för vilken man oftast hittar drivrutiner på nätet.

Notera att skärmen inte är nödvändig för funktionen.

Om ingen skärm finns kan programmet fortfarande köras genom att kommentera bort

#define HAVESCREEN

genom att skriva // framför definitionen d.v.s:

//#define HAVESCREEN

Programmet använder då inte alls skärmen men kontroll över programmet via Bluetooth och Arduino IDE fungerar fortfarande.

Programmet i Arduino

Programmer är skrivet i Arduinos C/C++ som är standardspråket om man använder Arduino IDE. Programmet är skrivet i en form som är typisk för en mikrokontroller där det ofta helt saknas ett underliggande operativsystem. Programmet sköter alltså själv alla funktioner och det är programmerarens sak att se till att programmet aldrig hamnar i en återvändsgränd och stoppar. Programmet är i princip en oändlig slinga som upprepas på nytt och på nytt. En cykel körs på ungefär 1/10 sekund. Vid varje varv genom programslingan kontrollerar programmet om det är tid att göra en mätning, kontrollerar om det finns något nytt kommando som borde utföras.

Om det är tid att göra en mätning så mäts temperatur och luftfuktighet och mätningens nummer, tiden sedan programstart, temperatur och luftfuktighet loggas till SD-minne. Temperaturen skrivs också ut på skärmen.

Om det finns ett kommando så utförs kommandot varefter programmet väntar på att följande varv genom slingan skall starta. Långa kommandon t.ex. en utskrift av en lång datafil kan ge tidsfel d.v.s. avståndet mellan två mätningar behöver inte vara helt exakt.

Notera att indenteringarna iprogrammet har förlorats vid inklistringen  i bloggen.

Jag kommer senare att lägga ut programmet på Github som fri programvara. Tillåtelse att använda programmet fritt ges här.

// Temperature_logger
// (c) 2019 Lars Silén
// Version 1.0
//
// Runs on an Arduino Mega 2560
//
// Using a 480×320 TFT diplay will hide the ICSP connector which caries
// the HW SPI signals. The are two options going around this problem.
// The first option is th solder the signals to the ICSP allowing us to use
// the ICSP connector with the display mounted (this option is selected here).
// The other option is to use a SW SPI library driving the SD memory card.
// This option is not selected.
//
// Any free text comin in over BT is stored including clock stamp.
// This allows simple input of location.
//
#include <Arduino.h>
#include <dhtnew.h>
#include <SPI.h>
#include <SD.h> // Support library for SD memory
#include <SoftwareSerial.h>

#define HAVESCREEN

#ifdef HAVESCREEN
//################################################
// GLUE class that implements the UTFT API
// replace UTFT include and constructor statements
// remove UTFT font declaration e.g. SmallFont
//################################################

#include <UTFTGLUE.h> //use GLUE class and constructor
UTFTGLUE myGLCD(0,A2,A1,A3,A4,A0); //all dummy args

// Declare which fonts we will be using
//extern uint8_t SmallFont[]; //GLUE defines as GFXFont ref

#define ORG_X 10
#define ORG_Y 10
#define MAX_X 470
#define MAX_Y 300

#define SCALE_MINY -10.0
#define SCALE_MAXY 30.0
#define SCALE_TICY 2.5
#define CIRCLE 0
#define CIRCLE_SIZ 2
#define SQUARE 1
#define TRIANGLE 2
#define LINES 1
float miny = SCALE_MINY;
float maxy = SCALE_MAXY;
float ytic = SCALE_TICY;

#endif

#define SDavailable // We have access to a sd memory
#define REPORTINTERVAL 60*10 // For testing reporting is done ar one minute interval.
int reportinterval=REPORTINTERVAL;

// ****************************************************
// Thermo and humidity sensor
// ****************************************************

#define connectedTSens1 true
#define connectedTSens2 false

// Looks like digital IO 22-53 don’t work properly.
// Use PWM pins or A-series pins.
#define DHT22Sens1 A15
#define DHT22Sens2 A12

DHTNEW mySensor1(DHT22Sens1);
#ifdef DHT22Sens2
DHTNEW mySensor2(DHT22Sens2);
#endif

// ****************************************************
// SD-memory support
// ****************************************************
// MISO, MOSI and SCLK in ICSP header.
// CD on pin 53.

Sd2Card card;
SdVolume volume;
SdFile root;
int SDstop = false;

int measured = false;
float Temperature = -999.0;
float Humidity = -999.0;
unsigned long timeSecs = 0; // Updated at 1s intervals using interrupts this is the main clock
unsigned long timeSinceStart=0; // Time in seconds since start
unsigned long stepper_rotate=0; // How often should we rotate the tower by one movement step (one turn of the motor).

int reportCnt = 0;
boolean stringComplete = false;
String inputString = ””; // a String to hold incoming sewrial needs initialization in setup().
String sysString = ””; // Handles writing/reading data
SoftwareSerial BTSerial(A13, A14); // RX, TX

unsigned long t;
int counter=0;
int shortcnt=REPORTINTERVAL;
int isRunning = false;
unsigned long tOffs;

void setup() {
// Serial interface towards supervising computer at 9600 baud
Serial.begin(9600);
pinMode(A14,OUTPUT);
BTSerial.begin(9600);

// Set up the temperature/humidity sensor type DHT2x (AOSONG AM230x)
//pinMode(50,INPUT);
if(connectedTSens1){
mySensor1.read();
}
#ifdef DHT22Sens2
if(connectedTSens2){
mySensor2.read();
}
#endif
Serial.println(”Started the Temperature/humidity sensor”);
BTSerial.println(”Started the Temperature/humidity sensor”);

// Start the system
inputString.reserve(50);
sysString.reserve(50);

// ***********************************************
// Setup SD-memory
// ***********************************************
#define SDCS 48
//pinMode(SDCS,OUTPUT);
if (!card.init(SPI_HALF_SPEED, SDCS)) {
Serial.println(”initialization failed. Things to check:”);
Serial.println(”* is a card inserted?”);
Serial.println(”* is your wiring correct?”);
Serial.println(”* did you change the chipSelect pin to match your shield or module?”);

BTSerial.println(”initialization failed. Things to check:”);
BTSerial.println(”* is a card inserted?”);
BTSerial.println(”* is your wiring correct?”);
BTSerial.println(”* did you change the chipSelect pin to match your shield or module?”);
return;
} else {
Serial.println(”Wiring is correct and a card is present.”);
BTSerial.println(”Wiring is correct and a card is present.”);
}
SD.begin(SDCS);
if (!volume.init(card)) {
Serial.println(”Could not find FAT16/FAT32 partition.\nMake sure you’ve formatted the card”);
BTSerial.println(”Could not find FAT16/FAT32 partition.\nMake sure you’ve formatted the card”);
return;
}
if(SDstop==true){
Serial.println(”SD stopped use SDstart”);
BTSerial.println(”SD stopped use SDstart”);
}

#ifdef HAVESCREEN
// ***********************************
// Setup the LCD
// ***********************************
Serial.println(”Trying to init LCD”);
BTSerial.println(”Trying to init LCD”);
myGLCD.InitLCD();
myGLCD.setFont(SmallFont);
#endif
}

float get_temperature(int sensorNo){
switch(sensorNo){
case 1: if(connectedTSens1){
Serial.println(”mySensor1.temperature”);
BTSerial.println(”mySensor1.temperature”);
return mySensor1.temperature;
} else {
return -999.0;
}
break;
case 2: if(connectedTSens2){
Serial.println(”mySensor2.temperature”);
return mySensor2.temperature;
} else {
Serial.print(”Not connected connectedTSens2=”);Serial.println(connectedTSens2);
return -999.0;
}
break;
}
Serial.println(”Fell through no such sensor number”);
BTSerial.println(”Fell through no such sensor number”);
return -999.0;
}

unsigned long get_time_since_start(){
// Get time in seconds since start
return timeSinceStart;
}

void ck_serial(){
// ***********************************
// Handle incoming serial data
// ***********************************
// CheclUSB serial typically Arduino Serial Monitor
while (Serial.available()>0) {
// get the new byte:
char inChar = (char)Serial.read();
inputString += inChar;
// if the incoming character is a newline the command is complete
// set a flag so the main loop can
// do something about it:
if (inChar == ‘\n’) {
stringComplete = true;
//Serial.println(”Got CR”);
}
}
// Check Bluetooth connection to phone/pad
while (BTSerial.available()>0) {
// get the new byte:
char inChar = (char)BTSerial.read();
inputString += inChar;
// if the incoming character is a newline the command is come,
// set a flag so the main loop can
// do something about it:
if (inChar == ‘\n’) {
stringComplete = true;
//Serial.println(”Got CR”);
}
}
serial_cmd();
}

void writeToLog(String ipStr){
if(SDstop==true) return;

File wrf=SD.open(”tlog.txt”,FILE_WRITE);
wrf.print(counter);
wrf.print(”,”);
wrf.println(ipStr);
wrf.close();
}

void serial_cmd(){
int n=0;
float h;
float energy=0;
float price=0;
// Some very basic commands
if(stringComplete==true){
// Ensure that case doesn’t matter when entering commands.
inputString.toLowerCase();
if(inputString.startsWith(String(”#”))){
// Handle comments
// Allows us to use scripts on the PC to set parameters on the controller.
Serial.print(”# ”);
Serial.println(”inputString”);
BTSerial.print(”# ”);
BTSerial.println(”inputString”);
stringComplete=false;
return;
}
// Restart use of the SD memory card after a SD stop.
if(inputString.startsWith(String(”sdstart”))){
Serial.print(”# command=sdstart ”);
BTSerial.print(”# command=sdstart ”);
// Re-initialize the card. The card may have been replaced.
if (!card.init(SPI_HALF_SPEED, SDCS)) {
Serial.println(”initialization failed. Things to check:”);
Serial.println(”* is a card inserted?”);
Serial.println(”* is your wiring correct?”);
Serial.println(”* did you change the chipSelect pin to match your shield or module?”);
BTSerial.println(”initialization failed. Things to check:”);
BTSerial.println(”* is a card inserted?”);
BTSerial.println(”* is your wiring correct?”);
BTSerial.println(”* did you change the chipSelect pin to match your shield or module?”);
inputString=””;
return;
} else {
Serial.println(”Wiring is correct and a card is present.”);
BTSerial.println(”Wiring is correct and a card is present.”);
}
SD.begin(SDCS);
if (!volume.init(card)) {
Serial.println(”Could not find FAT16/FAT32 partition.\nMake sure you’ve formatted the card”);
BTSerial.println(”Could not find FAT16/FAT32 partition.\nMake sure you’ve formatted the card”);
return;
}
SDstop = false;
inputString=””;
stringComplete=false;
return;
}
// Secure removal of the SD memory card.
if(inputString.startsWith(String(”sdstop”))){
Serial.print(”# command=sdstop”);
BTSerial.print(”# command=sdstart ”);
SDstop=true;
inputString=””;
stringComplete=false;
return;
}
// Start logging
if(inputString.startsWith(String(”start”))){
Serial.println(”# command=start”);
BTSerial.println(”# command=start”);
isRunning=true;
tOffs=millis()/1000;
stringComplete=false;
inputString=””;
return;
}
// Stop logging
if(inputString.startsWith(String(”stop”))){
Serial.println(”# command=stop”);
BTSerial.println(”# command=stop”);
isRunning=false;
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”ymin”))){
Serial.print(”# command=ymin value=”);
BTSerial.print(”# command=ymin value=”);
#ifdef HAVESCREEN
miny=inputString.substring(4).toFloat();
Serial.println(miny);
BTSerial.println(miny);
#else
Serial.println(”Error: No screen defined”);
BTSerial.println(”Error: No screen defined”);
#endif
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”ymax”))){
Serial.print(”# command=ymax value=”);
BTSerial.print(”# command=ymax value=”);
#ifdef HAVESCREEN
maxy=inputString.substring(4).toFloat();
Serial.println(maxy);
BTSerial.println(maxy);
#else
Serial.println(”Error: No screen defined”);
BTSerial.println(”Error: No screen defined”);
#endif
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”ytic”))){
Serial.print(”# command=ytic value=”);
BTSerial.print(”# command=ytic value=”);
#ifdef HAVESCREEN
ytic=inputString.substring(4).toFloat();
Serial.println(ytic);
BTSerial.println(ytic);
#else
Serial.println(”Error: No screen defined”);
BTSerial.println(”Error: No screen defined”);
#endif
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”logint”))){
Serial.print(”# command=logint value=”);
BTSerial.print(”# command=logint value=”);
reportinterval=inputString.substring(6).toInt();
Serial.println(reportinterval);
BTSerial.println(reportinterval);
reportinterval=10*reportinterval;
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”replot”))){
Serial.println(”# command=replot”);
BTSerial.println(”# command=replot”);
#ifdef HAVESCREEN
setup_graph_screen();
#else
Serial.println(”Error: No screen defined”);
BTSerial.println(”Error: No screen defined”);
#endif
counter=1;
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”tlog”))){
Serial.println(”# command=tlog”);
BTSerial.println(”# command=tlog”);
#ifdef SDavailable
dumpTLog();
#else
Serial.println(”SD card not available”);
BTSerial.println(”SD card not available”);
#endif
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”tdata”))){
Serial.println(”# command=tdata”);
BTSerial.println(”# command=tdata”);
#ifdef SDavailable
dumpTData();
#else
Serial.println(”SD card not available”);
BTSerial.println(”SD card not available”);
//BTSerial.println(”SD card not available”);
#endif
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”ls”))){
Serial.print(”# command=ls: ”);
BTSerial.print(”# command=ls: ”);
File root = SD.open(”/”);
printDirectory(root,0);
root.close();
//root.openRoot(volume);
// list all files in the card with date and size
//root.ls(LS_R | LS_DATE | LS_SIZE);
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”ctlog”))){
Serial.print(”# command=ctlog”);
BTSerial.print(”# command=ctlog”);
clearTLog();
Serial.println(”tlog.txt cleared (erased)”);
BTSerial.println(”tlog.txt cleared (erased)”);
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”!”))){
Serial.print(”# command=”);
Serial.println(inputString);
BTSerial.print(”# command=”);
BTSerial.println(inputString);
#ifndef SDavailable
return;
#endif
t = millis()/1000;

File wrf=SD.open(”tlog.txt”,FILE_WRITE);
wrf.print(counter);wrf.print(”,”);
wrf.print(t);wrf.print(”, ”);
wrf.println(inputString);
wrf.close();
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”ctlog”))){
Serial.print(”# command=ctlog”);
BTSerial.println(”# command=ctlog”);
clearTLog();
Serial.println(”tlog.txt file erased”);
BTSerial.println(”tlog.txt file erased”);
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”ctdata”))){
Serial.println(”# command=ctdata”);
clearTData();
Serial.println(”tdata.txt file erased”);
BTSerial.println(”tdata.txt file erased”);
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”help”))){
Serial.println(””);
Serial.println(”COMMANDS:”);
Serial.println(”help –> This help.”);
Serial.println(”start –> Start logging”);
Serial.println(”stop –> Stop logging”);
Serial.println(”sdstart –> Re-initialize SD”);
Serial.println(”sdstop –> SD write stopped”);
Serial.println(”tlog –> Print tlog.txt”);
Serial.println(”tdata –> Print tdata.txt”);
Serial.println(”ls –> List SD files”);
Serial.println(”ctlog –> Erase tlog.txt”);
Serial.println(”ctdata –> Erase tdata.txt”);
Serial.println(”! –> Comment to tlog.txt.”);
Serial.println(”logint –> Logging interval secs.”);
Serial.println(”ymin –> Set plot ymin”);
Serial.println(”ymax –> Set plot ymax”);
Serial.println(”ytic –> Set plot ytic”);
Serial.println(”replot –> Clear screen and replot”);
Serial.println(””);

BTSerial.println(”COMMANDS:”);
BTSerial.println(”help –> This help.”);
BTSerial.println(”start –> Start logging”);
BTSerial.println(”stop –> Stop logging”);
BTSerial.println(”sdstart –> Re-initialize SD”);
BTSerial.println(”sdstop –> SD write stopped”);
BTSerial.println(”tlog –> Print tlog.txt”);
BTSerial.println(”tdata –> Print tdata.txt”);
BTSerial.println(”ls –> List SD files”);
BTSerial.println(”ctlog –> Erase tlog.txt”);
BTSerial.println(”ctdata –> Erase tdata.txt”);
BTSerial.println(”! –> Comment to tlog.txt.”);
BTSerial.println(”logint –> Log interval secs.”);
BTSerial.println(”ymin –> Set plot ymin”);
BTSerial.println(”ymax –> Set plot ymax”);
BTSerial.println(”ytic –> Set plot ytic”);
BTSerial.println(”replot –> Clear screen and replot”);
inputString = ””;
stringComplete=false;
return;
}
// Any comman that isn’t recognized is assumed to be a comme that is loged
// into the tlog.txt logfile.
Serial.print(”inputString”);
Serial.println(inputString);
writeToLog(inputString);
inputString = ””;
stringComplete=false;
return;
}
return; // Never reached
}

void report_serial(){
// Write as comma separated values for easy import to a spread sheet program

Serial.print(”Time,”); Serial.print(t); Serial.print(”, ”);
BTSerial.print(”Time,”); BTSerial.print((timeSecs/3600.0)); BTSerial.print(”, ”);
if(connectedTSens1){
Serial.print(”Temp1, ”); Serial.print(mySensor1.temperature); Serial.print(”, ”);
Serial.print(”Hum1, ”); Serial.print(mySensor1.humidity); Serial.print(”\n”);
BTSerial.print(”Temp1, ”); Serial.print(mySensor1.temperature); Serial.print(”, ”);
BTSerial.print(”Hum1, ”); Serial.print(mySensor1.humidity); Serial.print(”\n”);
}
//if(connectedTSens2){
// Serial.print(”Temp2, ”); Serial.print(mySensor2.temperature); Serial.print(”, ”);
// Serial.print(”Hum2, ”); Serial.print(mySensor2.humidity); Serial.print(”\n”);
//}
}

// ********************************************
// SD related functions
// ********************************************

void printDirectory(File dir, int numTabs) {
while (true) {

File entry = dir.openNextFile();
if (! entry) {
// no more files
break;
}
for (uint8_t i = 0; i < numTabs; i++) {
// Repaced ‘\t’ with ‘ ‘ to save screen space
Serial.print(‘ ‘);
BTSerial.print(‘ ‘);
}
Serial.print(entry.name());
if (entry.isDirectory()) {
Serial.println(”/”);
BTSerial.println(”/”);
printDirectory(entry, numTabs + 1);
} else {
// files have sizes, directories do not
Serial.print(”\t\t”);
Serial.println(entry.size(), DEC);
BTSerial.print(”\t\t”);
BTSerial.println(entry.size(), DEC);
}
entry.close();
}
}

void dumpTLog(){
// Dump the logfile to the external computer
char c;
#ifndef SDavailable
Serial.println(”Error: No SD memory available”);
BTSerial.println(”Error: No SD memory available”);
return;
#endif
File rdf = SD.open(”tlog.txt”,FILE_READ);
if (rdf){
while (rdf.available()) {
c=rdf.read();
Serial.write(c);
BTSerial.write(c);
}
rdf.close();
} else {
Serial.println(”Error: Could not open tlog.txt”);
BTSerial.println(”Error: Could not open tlog.txt”);
}
}

void clearTLog(){
#ifndef SDavailable
Serial.println(”Error: No SD memory available”);
BTSerial.println(”Error: No SD memory available”);
return;
#endif
SD.remove(”tlog.txt”);
}

void dumpTData(){
// Dump the logfile to the external computer
char c;
#ifndef SDavailable
Serial.println(”Error: No SD memory available”);
BTSerial.println(”Error: No SD memory available”);
return;
#endif
File rdf = SD.open(”tdata.txt”,FILE_READ);
if (rdf){
while (rdf.available()) {
c=rdf.read();
Serial.write(c);
BTSerial.write(c);
}
rdf.close();
} else {
Serial.println(”Error: Could not open usrlog.txt”);
BTSerial.println(”Error: Could not open usrlog.txt”);
}
}

void clearTData(){
#ifndef SDavailable
Serial.println(”Error: No SD memory available”);
BTSerial.println(”Error: No SD memory available”);
return;
#endif
SD.remove(”tdata.txt”);
}

#ifdef HAVESCREEN
int cy(int y){
// Convert y into screen coordinate sy)
int v=0;
v = MAX_Y – y;
if(v<0){
v = ORG_Y;
return v;
} else if(v>MAX_Y){
v= MAX_Y;
return v;
}
return v;
}

int cx(int x){
// Dummy conversion of x-coordinate to screen coordinate
int v=0;
v = x+ORG_X;
if(v<ORG_X){
return ORG_X;
} else if(v>MAX_X){
return MAX_X;
}
return v;
}

void draw_axisX(){
// Draw x-axis
myGLCD.drawLine(cx(0), cy(0), cx(MAX_X), cy(0));
}

void draw_axisY(){
// Draw y-axis
myGLCD.drawLine(cx(0), cy(0), cx(0), cy(MAX_Y-10));
}

int cnvYfloatToInt(float y){
int intY;
//intY = MAX_Y*(y-SCALE_MINY)/(SCALE_MAXY-SCALE_MINY);
intY = MAX_Y*(y-miny)/(maxy-miny);
//Serial.print(”y=”);
//Serial.println(y);
//Serial.print(”Conv intY=”);
//Serial.println(intY);
return intY;
}

void ticX(int dx){
// Starts from x=0
// Draw x-ticks
myGLCD.setBackColor(0, 0, 0);
for (int i=0; i<460; i+=dx){
myGLCD.drawLine(cx(i), cy(0), cx(i), cy(10));
sysString=String(i);
myGLCD.print(sysString, i+5, cy(15));
}
}

void ticY(float dy,int ltype){
float ypos;
int intY;
int i;
//for (int i=0; i<MAX_Y; i+=dy) myGLCD.drawLine(cx(0), cy(i),cx(10), cy(i));
ypos = miny;
while(ypos < maxy){
intY = cnvYfloatToInt(ypos);
myGLCD.drawLine(cx(0), cy(intY),cx(10), cy(intY));
if(ltype==LINES){
myGLCD.setBackColor(0, 0, 0);
for(i=10; i<469; i=i+10){
myGLCD.drawLine(cx(i), cy(intY),cx(i+3), cy(intY));
}
}
sysString=String(ypos);
myGLCD.print(sysString, 15, cy(intY+9));
ypos = ypos + dy;
}
}

void setup_graph_screen(){
myGLCD.clrScr();
myGLCD.setColor(255, 0, 0);
myGLCD.print(”* Temperature logger V1.0 *”, 30, 20);
// Draw a background
myGLCD.setColor(255, 0, 0);
myGLCD.fillRect(0, 0, 479, 13);
myGLCD.setColor(64, 64, 64);
myGLCD.fillRect(0, 306, 479, 319);
myGLCD.setColor(255, 255, 255);
myGLCD.setBackColor(255, 0, 0);
draw_axisX();
ticX(60);
draw_axisY();
ticY(ytic,LINES);
}

void plot_point(int x, float flY, int symb){
int y;
//Serial.print(”Initial float Y=”);
//Serial.println(flY);
y = cnvYfloatToInt(flY);
//Serial.print(”Converted intY=”);
//Serial.println(y);
switch(symb){
case CIRCLE: myGLCD.drawCircle(cx(x), cy(y), CIRCLE_SIZ);
break;
}
}
#endif

void store_data_SD(){
if(SDstop==true) return;
File wrf=SD.open(”tdata.txt”,FILE_WRITE);
wrf.print(t-tOffs);
wrf.print(”,”);
wrf.print(counter);
wrf.print(”, T , ”);
wrf.print(mySensor1.temperature);
wrf.print(”, h , ”);
wrf.println(mySensor1.humidity);
wrf.close();
}

// ********************************************************************************************
// MAIN PROGRAM
// We run, very roughly one loop per second.
// Notice that variables defined within the loop are local to loop() and they
// are initialized when a new loop starts. To preserve data between loops variables have
// to be declared outside the loop().
// ********************************************************************************************

void loop() {
// ******************************************************
// Main loop for actual work
// ******************************************************
ck_serial();

if (counter==0){
#ifdef HAVESCREEN
setup_graph_screen();
#endif
counter=1;
}
shortcnt–;
if((shortcnt<=0) & isRunning==true){
mySensor1.read(); // Read Temperature and Humidity sensor #1
t = millis()/1000; // Seconds since start
Serial.print(t-tOffs);
Serial.print(” , ”);
Serial.print(counter);
Serial.print(” , T , ”);
Serial.print(mySensor1.temperature);
Serial.print(” ,h, ”);
Serial.println(mySensor1.humidity);
BTSerial.print(t-tOffs);
BTSerial.print(”,”);
BTSerial.print(counter);
BTSerial.print(” , T , ”);
BTSerial.print(mySensor1.temperature);
BTSerial.print(” , h , ”);
BTSerial.println(mySensor1.humidity);
shortcnt = reportinterval;
#ifdef HAVESCREEN
plot_point(counter,mySensor1.temperature,CIRCLE);
#endif
store_data_SD();
counter++;
}

delay(100);
}

Historisk datateknik

24/12/2018

Mina första kontakter med datateknik var på 1960-talet då min far lånade hem en Olivetti Programma 101 ”dator” eller kanske bättre programmerbar (bords) räknemaskin. Datorn var stor som en modern resväska men den var programmerbar i 100 steg dock så att varje variabel förbrukade ett programsteg.
Olivetti_programma_101

Pappa programmerade maskinen till att bl.a. skriva ut lyftdata för olika vingprofiler. Ungdomarna i familjen (däribland jag) var intresserade av modellflyg.

Följande steg för mig var Science of Cambridge Mk14  som var en 8-bitars dator med 256 minnesplatser. Program kunde lagras på kassettband men man måste alltid börja med att knacka in ett laddprogram i hexadecimal form. Jag hade inbillat mig att jag skulle ha kunnat expandera maskinen till att bli den programmerbara funktionsräknare jag egentligen önskade mig. Resultatet blev att jag lärde mig programmering i assembler men så att jag själv översatte koden till binär (hexadecimal) form.

Några år senare jobbade jag i Tavastehus på ”Ammattikoulujen Opettajaopisto” som fungerade i anslutning till en teknisk skola. Man hade en Eclipse minidator som tidsdelat användes bl.a. till undervisning i programmering (Fortran).  Min uppgift var. bl.a. att skriva enkla undervisningsprogram. Jag märkte snabbt att det lönade sig att använda en fristående mikrodator som körde CP/M operativsystemet i stället för att dela minidatorn. Eclipse minidatorn hade en kapacitet som var en bråkdel (kanske 1/1000) av kapaciteten hos en modern PC och samma maskin användes samtidigt av tjugo elever till att kompilera Fortran. Resultatet var naturligtvis att Eclipsen under skoltid var fruktansvärt trög … man kunde vänta i flera sekunder på att en knapptryckning skulle noteras. Den lilla CP/M maskinen hade endast en användare (jag) så den var underbar att använda. En persondator innan den egentliga persondatorn (IBM PC) ens var uppfunnen.

Jag råkade för en kort tid sedan på nätet stöta på en artikel om emulering av CP/M maskiner med hjälp av Arduino processorer. Den mest extrema vartianten jag har sett är då en Arduino Nano, dock med stöd av extern hårdvara, har använts till att köra CP/M. En enklare variant, då processorn är mycket mera kraftfull, är att emulera CP/M med hjälp av en Arduino Due som är ett ARM-baserat processorkort som antagligen är några hundra gånger snabbare än den ursprungliga Intel 8080 processorn.

Arduino_Due_CPM_system.png

Mitt emulerade CP/M system med hårdskiva till höger. Skivenheten är ett 4G SD-kort som är så litet att man inte hittar sådana i butikerna längre. På kortet finns katalogerna A, B, D, D, E som motsvarar forntidens 8 tums skivminnen. Skillnaden är att mina skivstationer A, B  … har en nästan obegränsad kapacitet. De första 8 tums ”floppyna” hade en kapacitet på kanske 150 000 tecken. Min extrema SD-hårdskiva har en kapacitet som är 25000 gånger större än en forntida 8-tums floppyenhet. En floppy hade en så liten kapacitet att man normalt körde t.ex. en kompilator från en skiva och hade texteditorn och programmet som kompilerades på en annan skiva.

Man kan köra CP/M i normal hastighet på kortet. Processorn har så mycket RAM minne att det finns nästan 64kByte minne ledigt för program … ett sagolikt stort minne!  Maskinen är helt användbar bl.a. till textbehandling (Wordstar) trots att en modern PC har ett minne som är ungefär 125 000 ggr större!

CP_m_2.2_Arduino_Due

Bilden ovan visar hur jag kör CP/M i textterminal GtkTerm. Det dök egentligen upp endast två poblem.

Det första problemet var hur det var tänkt att det simulerade skivsystemet med skivenheterna A:, B:, C: osv skulle konfigureras för att maskinen skulle hitta systemfilen och starta. Jag blev tvungen att lägga till några kommentarer tll emulatorns uppstartsrutin för att se varför systemet inte först ville starta., därför finns kommentaren ”Looking for: CPM22.BIN. Jag visste helt enkelt inte om problemet var SD-kortet eller platsen där systemet var lagrat i förhållande till övriga CP/M rutiner.

Det andra problemet var trivialare … att hitta ett lämpligt terminalemulatorprogram för linux som skulle gå att använda direkt utan läsande av någon bruksanvisning.   Att hitta ett terminalemulatorprogram var egentligen det storsta problemet med att få igång CP/M systemet på riktigt. Arduinons utvecklingsmiljö har något de kallar ”Serial Monitor” d.v.s ett enkelt program som kan  skicka kommandon till Arduinon och skriva ut den text som kommer tillbaka från kortet. Monitorn visade nog att jag hade fått CP/M startat men det gick inte att i praktiken köra något eftersom monitorn inte motsvarade en riktig gammaldags intelligent terminal. För detta ändamål behövs det en terminalemulator som klarar av att tolka bl.a. kontrolltecken som CP/M systemet skickar till terminalen.

Det behövdes en aning debuggning av SD-kortet som används i stället för skivminne, därav min kommentar vid uppstart ”Looking for: CPM22.bin”.

MBASIC_1985-1986.png

Bilden visar hur systemet kör Microsoft MBASIC från 1986 i en CP/M emulator som körs i en Arduino Due. Arduino Due har följande specifikationer:

Processor 32-bitars ARM.

Flash programminne 512 kB

RAM-minne 96 kB

Klockfrekvens 84 MHz

Detta kan jämföras med orginalets processor Intel 8080 som körde på 2 MHz men så att en instruktion typiskt behövde mellan 4 och 8 klockcykler. Arduinon kör alltså ungefär 100 ggr snabbare vilket gör att den klarar av att emulera en Intel 8080 processor i full hastighet.

Det är intressant att jämföra CP/M maskinen ovan med kapaciteten hos en typisk persondator av idag.

Programminne RAM är 25 000-50 000 ggr större än hos en CP/M maskin.

Skivutrymmet på en modern dator är 20 000 000 ggr större än hos ett typiskt CP/M system med en skivenhet.

Processorn är idag ungefär 4000 ggr snabbare med en ordlängd d.v.s. storleken på de datapaket datorn behandlar är 8 ggr större.

 

NGO eller hur staten betalar för åsikter

18/12/2018

I George Orwells bok 1984 lär vi oss att vi skall tolka det politiska fikonspråket precis tvärtom mot vad man egentligen säger. Språket förvrängs kontinuerligt, avsiktligt, för att grumla till debatt kring känsliga frågor ”… vi avser ju inte det du säger.”

Politiska lögner kan idag eventuellt lättare avslöjas än tidigare eftersom det finns informationskanaler som inte kontrolleras av makthavarna. Att man inte kan lita på officiell information är ett välkänt faktum. T.ex. Bismark konstaterade ”tro inte på någonting innan det officiellt har förnekats.”

Vi kan testa hur vi skall utnyttja ovanstående:

Vi kan på nationell nivå och på internationell nivå se vilken roll en mängd NGO:s (Non Governmental Organisations, icke statliga organisationer). Via media serveras vi bilden att dessa NGOn representarer den vanliga medelsvensson. Om vi använder Bismarks eller 1984 läsning så torde resultatet bli:

Bismarks läsning:

Namnet ”Non Governmental Organisation” börjar med nekningsordet ”Non” d.v.s. ”icke”. Hur finansieras dessa icke statliga stororganisationer?

Svar #1:  Via statliga pengar som samtidigt styr vilka åsikter organisationen har. Personer med fel åsikt fryses ut (se video nedan).  NGO:n fungerar alltså som statliga strategiers gummistämpel d.v.s. man kan peka på stöd från befolkningens sida eftersom det är fråga om en NGO.

Svar #2: Vissa NGO:n finansieras av superrika oligarkkretsar för att driva specifika frågor utan att beställarens namn syns. Ett exempel på detta är George Soros stöd till mängder av NGO:n.  Då man konstaterar att pengarna ges för ett gott ändamål utan krav på specifika genkänster kan man antagligen applicera Bismarks tänkande på detta.

En intressant sidofråga som kan vara relevant är varifrån Orwells boks namn ”1984” har tagits. George Orwell själv tvekade mellan The Last Man in Europe och 1984. Följande fråga blir naturligtvis varifrån årtalet 1984 kommer? Det har framförts idén att titeln 1984 skulle ha skapats utgående från att 1984 skulle vara hundraårsdagen för grundandet av The Fabian Society i Storbrittannien.

Några länkar:

The Fabian Society

Notera hur man syntetiserar  socialism + kapitalistm –> Den tredje vägen.

Var hittar vi den tredje vägen? Den Italienska fascismen.

År 1954 grundades Bilderberg gruppen som har nära kopplingar till Fabianisterna. I Bilderbergmötena, som är slutna tillställningar utan yttre insyn, har mängder av finska politiker deltagit. Kan vi lita på att dessa politiker har landets  bästa som mål?

Notera hur ledande politiker ur båda grupperna representerar världens absoluta ekonomiska elit. Kan man faktiskt lita på att världens socialistoligarker faktiskt har hela världens bästa framför ögonen?

 

 

Världens största blåsning någonsin

17/12/2018

Det är ett välkänt faktum att det är mycket olönsamt att råna en bank. Det finns inte längre några pengar i en vanlig bank och de pengar som finns eller som transporteras mellan företag och kund är väl skyddade.

Dagens gangsters är väl skolade och de är inte intresserade av småsummor. Vad är väl bättre än att formelt lagligt töma världens skattebetalares (läs medelklassens) fickor och flytta över pengarna i dagens superrikas fickor. Hur görs detta?

För att få vara med om den stora fördelningsfesten måste man ha ett bra startkapital. Man påverkar världens beslutsfattare (önskade beslut fås alltid till stånd om priset är det rätta) till att skapa en överföringsautomat som garanterar investeraren en riskfri inkomst … de verkliga kostnaderna dras från statssubsidier d.v.s. skattebetalaren betalar kalaset.

Jag tänker naturligtvis på den globala klimathysterin och satsningen på samhällsförstörande s.k. hållbar energi. Det stora problemet med den synliga delen av den hållbara energin d.v.s. vindkraft och solkraft är att den är destruktiv för världens energisystem. De här energikällorna behandlas inte likvärdigt med andra energikällor bl.a. genom att de har förtur till nätet d.v.s. de kan alltid sälja den energi som de producerar även om detta betyder att man tvingar t.e.x. konventionella kraftverk att gå på tomgång med dålig verkningsgrad. Då det blåser mycket kan det bli en katastrofal överproduktion som måste dumpas utanför producentens gränser eftersom energin inte kan lagras ekonomiskt.

Satsningen på vind/sol har kostat bortåt 1 miljard dollar per dag sedan 2011. Satsningen har inte gett några CO2 inbesparingar (se t.ex. på Tyskland) men satsningarna har kraftigt höjt energipriset i länder med en stor andel förnybar energi av denna typ. Investeringarna i förnybar energi har sedan 2011 kostat grovt taget 2200 miljarder dollar som till betydande del har flyttats över i superrikas fickor genom garantipriser, garantiproduktion och garanterad inkomst.

RenewableInvestment1-768x419_2011_2017.png

Vad kunde 2200 miljarder dollar användas till

Summan 2200 miljarder är ofattbart stor. Antag att vi anställer en miljon människor till att räkna igenom en hög med 2200 miljarder mynt och antar att varje räknare kan räkna och bokföra en slant per sekund. Hur lång tid behövs det för denna miljon räknare att ta sig igenom hela högen?

Svar: Ungefär fyra månader för en miljon arbetare om man antar 8 timmars dagar utan pauser.

Ovanstående satsning 2 200 000 000 000 dollar motsvarar sett ur en annan synvilkel ungeför 50 000 000 årsverken med finsk medellön.

Vad kunde man ha fått till stånd med dessa pengar?

Brunnar i Afrika

Det finns ett stort behov av brunnar i Afrika. Att borra en brunn kostar 1000 – 1500 dollar/brunn med lokal teknologi. Vi kunde finansiera 1.4 miljarder brunnar för den summa vi har förslösat på fantasier. Vi kunde alltså ha bygga bort hela brunnsbristen för en liten del av summan.

Avsaltning av havsvatten

På platser där det inte finns grundvatten behöver vi producera vatten på annat sätt. T.ex. vid afrikas horn så finns det havsvatten att tillgå. Vad skulle byggandet av avsaltningssystem kosta i detta område? Befolkningen i området uppgår till 48 miljoner och vi antar att vi vill producera 100 liter vatten per person och dag för t.ex. tio procent av befolkningen. Notera att det finns fungerande vattentillgångar idag. Vad skulle en avsaltningsanläggning (anläggningar) kosta?

Isarael har byggt avsaltningsanläggningar som idag tillåter landet att exportera vatten till grannländerna.  Priset på en anläggning som avsaltar 125 liter vatten per person  för fem miljoner invånare kostar ca. 500 miljoner dollar och priset per kubikmeter är idag ca. 58 cent. Vi får en bättre bild av priset om vi jämför priset med t.ex. amerikanska F35 jaktplan. Priset för att bygga bort vattenbristen i området motsvarar ungefär 5 st jetjaktplan. Till detta bör naturligtvis läggas distribueringssystem. Vi kunde för de bortkastade klimatpengarna bygga fyratusen motsvarande system. Pengar skulle således finnas för även andra ändamål.

Utbildning av världens befolkning

Ett annat sätt att titta på summan är att se vad utbildning kostar. Man har uppskattat att det kostar ungefär 1.25 dollar per barn och dag att utbilda barn till den nivå man strävar mot (FN). Summan 2 200 000 000 000 dollar skulle räcka till för nästan 5 miljarder utbildningsår d.v.s. man kunde på kort tid bygga upp utbildning för alla världens barn … om det skulle finnas intresse för detta.

Vad har det kostat per kapita

Vi har blivit rånade på ungefär 600 dollar för varje man, kvinna och barn på det här jordklotet med ett resultat som ur klimatsynvinkel är fullständigt omätbart. Pengarna används idag av världens jetset till privata flygplan, ett antal hus vid havsstränder (Al Gore) etc. Däremot förväntas betalarna d.v.s. världens medelklass skära ner på sin konsumtion .

Jag kan personligen leva trots en stöld på 600 dollar. Situationen är dock mycket värre för världens fattiga som enligt världsbankens definition lever på 1.9 dollar per dag. För dessa människor betyder det att de har blivit bestulna på 88% av sin årsinkomst. Ökade kostnader slår alltid hårdast mot de fattiga. För de superrika spelar det ingen roll om t.ex. bensinpriset stiger tiofalt … peanuts!

Hmmm!

 

 

 

 

 

 

Havens uppvärmning stigande havsyta

27/11/2018

Det här är ett försök att uppskatta hur stor den termiska havsytehöjningen är utgående från kända bakgrundsdata. Kontakta mig gärna om du hittar grova felaktigheter. Notera att det här är en överslagsberäkning (back on the envelope). Vi är intresserade av storleksordningen.

Världshaven är jordklotets värmeregulator eftersom 70% av jordens yta är hav. Världshavens vämekapacitet är många hundra gånger större än atmosfärens värmekapacitet.

Världshaven är intressanta genom att temperaturprofilen botten –  yta är precis tvärtemot vad man intuitivt skulle vänta sig. Världshavens bottenskikt är kallare än ytan vilket är en följd av att vattnets täthet (vikt per kubikmeter) minskar då temperaturen sjunker mot +4 grader för att därefter börja öka igen. Den här egenskapen hos vatten är orsaken till att planeten inte är i huvudsak en isklump med ett tunt lager ytvatten nära ekvatorn.

Vattnets täthetsförändring som funktion av temperaturen skapar en effektiv mekanism för värmetransport från tropikerna till polerna. Varmt vatten transporteras på ytan mot polerna. Då havsis bildas vid polarområdena sjunker kallt och saltrikt vatten ner mot havsdjupen och rinner tillbaka mot tropikerna längs havets botten.

Haven har en annan mycket effektiv värmeregulator som leder till att havsytans temperatur vid tropikerna ytterst sällan går över ca. 28 – 30 grader C. Då det tropiska havet värms kommer avdunstningen från havsytan att öka och stora mängder vatten förs upp i atmosfären som ånga varvid det bildas moln som reflekterar bort solljus till rymden.  Vattenångan är samtidigt en extremt god värmetransportör som effektivt transporterar värme från ytan till ca. 10 km höjd där värmen strålar ut i rymden.

De två värmeregulatorerna ovan aranterar att hvsytans temperatur vid nordliga breddgrader sällan går mycket under 0 grader C eftersom det bildas ett isolerande isskikt vid lägre temperaturer och tropiska hav värms inte över 28-30 grader C eftersom det ger upphov till kylande åska på eftermiddagarn. Om mera värme strålar in till tropiska hav så leder detta till att eftermiddagens åskväder förskjuts en aning mot en tidigare tidpunkt på dagen och havsytans temperatur ändras mycket lite.

Kontroll av havens temperaturtrend

Det finns många sätt att kontrollera havens temperaturtrend. Den skenbart enklaste metoden är extremt svår i praktiken d.v.s. att mäta temperaturen på olika djup i havet och beräkna trender för hela havet. Problemet är att havets medeldjup är ca. 3500 meter och det finns helt enkelt inte ännu tillräckligt mycket pålitliga mätningar för att man skall kunna få fram en pålitlig trend. Försök görs hela tiden (en artikel i The Guardian) .

Något om hur extremt små/stora tal noteras inom naturvetenskaperna:

Vattnets temperaturutvidgningskoefficient (längd) är ungefär 0.0000293 per grad C. Det är väldigt jobbigt att skriva ner ett stort antal nollor före ett tal eller många nollor efter ett tal. Man har av denna orsak förenklat saken så att man anger de signifikanta siffrorna som ett decimaltal t.ex. ovan 2.93 och sedan anger man hur många nollor man skall sätta före eller efter detta tal för att få fram det ursprungliga talet. I ovanstående fall blir utvidgningskoefficienten:

0.0000293 = 2.93/100000 = 2.93/(10*10*10*10*10) = 2.93/10⁵ = 2.93*10⁻⁵ = 2.93E-5

På motsvarande sätt kan vi kompakt uttrycka världshavens totala (uppskattade) vikt:

1.37E21 kg vilket kan skrivas som:

1.37*10²¹ kg vilket blir:

1.37*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10

1.37* 1 000 000 000 000 000 000 000 kg vilket alltså blir:

1370000000000000000000 kg

Multiplikation/division  av stora tal blir enkla:

121000000*3140000 = 1.21*3.14*10⁸*10⁶= 1.21E8*3.14E6 = 1.21*3.14E(8+6) = 3.79E14

Antalet nollor får vi genom att addera exponenterna d.v.s. indexen över 10 eller talen efter E.

 

Egenskaper hos vatten

Vatten är ett rätt komplicerat ämne vad gäller expansion. Vid 10 ⁰C är utvidgningen ungefär 2.93E-5 per ⁰C. Då temperaturen sjunker så sjunker också expansionskoefficienten för att vid 4 grader C ligga på noll och därefter börjar vattnet igen att utvidga sig.  Största delen av havet har en temperatur nära 4 grader C d.v.s. expansionen är mycket liten inom detta intervall.

Vi kan göra en enkel mycket konservativ (d.v.s. den överdriver den termiska expansionen) överslagsberäkning av hur mycket havsytan stiger till följd av stigande temperatur. En grov överdrift fås t.ex. genom att anta att havets nuvarande temperatur skulle vara +10 grader C. Frågan blir då hur mycket havsytan stiger för varje grad temperaturen ökar.

dh = h*dT*a

dh = havsytehöjning i meter

h   = havets medeldjup 3500 meter

dT = temperaturstegringen i grader celsius eller Kelvin.

a   = längdutvidgningskoefficient vid +10 ⁰C = 2.93E-5/⁰C

Då vi lägger in talvärden får vi:

dh = 3500m*1⁰C*2.93E-5/⁰C = 0.1 m

Vi ser att den termiska expansionen är helt försumbar för alla förväntade havstemperaturer. Den lilla årliga stegringen 2-3 mm/år  vilket motsvarar ca. 20 cm på hundra år skulle kräva att hela havets medeltemperatur skulle stiga med 0.66 grader på hundra år. Vi ligger lång från den nivån.

Uppskattning av hur mycket havet värms idag

Man har grovt uppskattat att det i haven lagras en energimäng på ungefär 8.5E21 J/år.Mängden låter, och är, ofantlig. Frågan blir då hur mycket hela havet värms upp per år om trenden fortsätter under en lång tid framår.

Vi vet att världshavens totala massa är ungefär 1.37E21 kg.

Imbalans i havens energi-innehåll är ungefär33E22 J på 30 år. Ur detta kan vi då vi känner havets massa beräkna temperaturstegringen då vi vet att värmekapaciteten hos vatten är 4.18 J/g⁰C. Temperaturstegringen per år blir då ungefär:

dT = /33E22J/30år)/(1.37E24g*4.18J/g⁰C) = 0.00192 ⁰C/år

Min personliga åsikt är att uppskattningen är grovt i överkant eftersom haven värms uppifrån och stigande yttemperatur leder till ökande avdunstning och snabbare värmeförlust via konvektion till rymden. Vattentemperaturen under ca. 1000 m djup ligger mycket nära fyra grader d.v.s. utvidgningskoefficienten är mycket nära noll. Detta betyder att nedanstående beräkning överskattar den verkliga havsytehöjningen ca. 3 ggr.

Vi kan nu beräkna hur mycket havsytan stiger till följd av termisk utvidgning av havsvattnet som långsamt blir varmare.

dh = 3500m*0.00192⁰C/år*2.93E-5/⁰C = 1.98E-4 m/år = 0.2 mm/år

Korrektion för att två tredjedelar av havsdjupen har en längdutvidgningskoefficient mycket nära noll ger då:

dh = 0.3*0.2 mm/år = 0.06mm/år vilket torde ligga långt under vad vi idag kan mäta.

Är det här faktiskt något det lönar sig att vara orolig över 6 – 20 mm på hundra år? Det korrekta värdet torde ligga betydligt närmare 6 mm/århundrade än 20 mm/århundrade.

Osäkerheten i uppskattningarna gällande stigande havsyta ligger på uppskattningsvis 1.5 mm/år vilket är ungefär 25 gg större än den ovan uppskattade termiska havsytehöjningen.

 

Ljudpinneverktyg för Nyckelharpa

18/09/2018

Jag konstruerade för kanske ett år sedan ett ljudpinneverktyg för justering av fioler. Verktyget används till att mäta ljudpinnens plats i förhållande till stallet.

Som känt har ljudpinnen en viktig roll i hurudant ljud fiolen ger. Det är inte utan orsak man på olika språk säger att ljudpinnen är violinens själ! Nyckelharpan har precis som fiolen en ljudpinne som även den måste vara korrekt injusterad för att harpan skall klinga. Ljudpinneinstrumentet nedan är konstruerat för nyckelharpa d.v.s. det är något större än motsvarande instrument för violin.

Ljudpinneverktyget består av två halvor. Den nedre halvan har ett urtag som motsvarar en halv ljudpinne. Man för in den nedre halvan genom f-hålet och hakar urtaget i ljudpinnen. Den övre halvan som således ligger ovanpå locket visar då grafiskt exakt var ljudpinnen står. Vill man dokumentera ljudpinnens plats kan man ange avstånd på följande sätt:

  • Den korta skalan närmast ljudpinnens plats i riktning mot f-hålet anger ljudpinnens avstånd till stallets kant. Skalan går från 5 – 10 mm.
  • Den långa skalan visar ljudpinnens plats i förhållande till f-hålet. Skalan går från 15-30mm
  • Den korta skalan som går i instrumentets längdriktning anger avståndet mellan ljudpinnen och stallets bakkant.

Ljudpinneverktyget har konstruerats utgående från Sören Åhkers ritning (  http://www.sorenahker.com/sortiment/order.htm ÖVR008). Jag gissar att samma verktyg bör gå att använda också på andra nyckelharps ”familjer”.

Ljudpinneverktyg_openscad

Bilden visar hur verktyget har skapats i programmet OpenScad. Man kunde lika väl ha använt något CAD-program som stöder generering av stl-filer.

Verktyget i bilden är tänkt som en gåva till nyckelharps ”gurun” Esbjörn Hogmark.

Hur kan jag köpa verktyget? Du kan inte köpa det men du kan skriva ut det själv. I slutet av den här artikeln hittar du en länk till ljudpinneverktygets ”.stl”-fil.  Du laddar ner stl-filen och går till någon person som har en 3d-skrivare, till ett bibliotek (gäller åtminstone Helsingforsregionen i Finland) .. eller så går du till en firma som gör 3d utskrifter.

Hur skriver man ut verktyget?

3D-skrivaren drivs av ett kontrollprogrami mitt fall heter programmet ”Repetier-Host” men det finns flera andra som fungerar enligt samma principer.

Steg #1

Ladda ner .stl-filen på datorn till en lämplig katalog. Det enda kravet är att du hittar programmet. Du kan lagra filen på en minnepinne om du vill skriva ut verktyget på en publik skrivare.

Steg #2

Starta kontrollprogrammet i mitt fall Repetier-Host. Sätt på skrivaren. Då programmet startar klickar man ”Connect” för att koppla ihop skrivare och dator.

Steg #3

Ladda in stl-filen i mitt fall finns en knapp ”Load”. Programmet visar nu hur verktyget kommer att se ut i grafisk form på skärmen.

Steg #4

Översätt stl-filen till maskininstruktioner. Detta görs med ett program som kallas ”Slicer” d.v.s. programmet skivar den 3d-modell som stl-filen beskriver i ungefär 0,25 mm höga skivor ch beräknar därefter hur skrivarhuvudet skall röra sig för att fylla skivan med plastmaterial.

Steg #5

Ställ in bäddens temperatur enligt skrivarens instruktioner. I mitt fall kör jag med materialet PLA för vilket bäddens tempeSteg #1ratur kan sättas till 60 grader C och extruderns (utskriftsmunstycket) temperatur till 205 grader C.

ljudpinneverktyg

Bilden visar hur det ser ut på datorskärmen under utskriften. Utskriften kräver ca. 20 minuter d.v.s. det finns precis tid för en kopp kaffe.

Du hittar ljudpinneverktyget här i zip-format. Filen måste packas upp innan den används. Moderna perativsystem packar upp filen då man klickar på den.

Filen finns här: ljudpinneverktyg_nyckelharpa.

Montering efter utskrift

Verktyget skrivs ut i två delar som limmas ihop t.ex. med hjälp av Superlim (Cyanoacrylat), epoxy eller något annat lämpligt lim. Notera att vattenbaserade lim inte fungerar så bra eftersom plasten gör att limmet torkar mycket långsamt.

Steg #1

Slipa ytan på den undre delen d.v.s. den del som har en fyrkant med hål i i den ena ändan. Slipning av ytan gör att vi inte av misstag skrapar insidan av harpan då verktyget används. Den övre delens undre del är helt slät och behöver inte slipas.

Steg #2

Sök fram en 4mm maskinskruv med mutter varefter du stryker lim på fyrkanten i den undre delen. För skruven genom hålet i den undre och den övre delen och dra åt muttern försiktigt. Vrid genast den övre delen så att cirkeln som visar ljudpinnens plats matchar motsvarande urtag i den undre delen.  Du kan också trä en grov nål genom det lilla hålet mellan de två skalorna i verktygets längdriktning. Motsvarande hål finns också i den undre delen.  Använd nålen till att rikta den övre delen i förhållande till den undre så att passningen mellan delarna blir exakt.

Steg#3

Drag åt muttern och vänta någon timme på att limmet stelnar helt.

Man kan göra skalorna tydligare genom att färga skalstrecken t.ex. med vit, silver- eller guldmärkpenna.

Verktyget får fritt skrivas ut och om så önskas också i försäljningssyfte. Vid försäljning bör källan d.v.s. en länk till eller utskrift av den här artikeln följa med verktyget.

Schitzofreni och Vitamin B3 (Niacin)

23/02/2018

Svåra Pellagra-epidemier grasserade i de amerikanska sydstaterna under den förra hälften av 1900-talet. Man talade om sjukdomen med de fyra D-na  på engelska:

  • Dermatitis (hudproblem)
  • Diarrhea (diarre)
  • Dementia (demens)
  • Death (död)

Man har uppskattat att det mellan 1906 och 1940 fanns 3 miljoner fall av Pellagra vilket ledde till ca. 100 000 dödsfall.  Orsaken till sjukdomen, som först beskrevs av en spansk läkare Don Gasper Casal år 1735, var okänd. Casal kallade sjukdomen mal de la rosa.

En intressant beskrivning av  pellagraepidemin i USA   början av 1900-talet visar hur människorna som hade Pellagra frystes ut på ungefär samma sätt som personer med HIV idag.

Sjukdomen pellagra beror på akut brist på vitamin B3 (Niacin). Orsaken till epidemin i USA var att bomullsodlingen ledde till en mycket ensidig odling av andra grödor vilket ledde till att främst de fattiga som i hög grad levde på majs kom att drabbas.

Det är intressant att notera att ursprungsbefolkningen inte drabbades i samma mån trots hög konsumption av majs. Orsaken var att att niacinet i huvuddrag fanns i kornets grodd som europeiska behandlingsmetoder eliminerade. Niacin i majs är dessutom relativt svårlösligt vilket kan åtgärdas på indianskt vis genom att blötlägga majsen i alkalisk vätska före användningen … niacinet blir lättare att uppta av kroppen.

Läkarna spekulerade kring många orsaker till sjukdomen. Vissa trodde att det var en bakteriesjukdom eftersom sjukdomen förekom epidemiskt på begränsade områden. Sjukdomen förekom också allmänt på t.ex. sinnesjukhus där patienterna men inte vårdpersonalen drabbades. Skillnaden mellan vårdare och patienter låg i att patienterna åt en extremt ensidig diet baserad i huvudsak på majs medan vårdarna åt en mera varierad och närande mat. Dödligheten i patientgruppen var 64%!

År 1914 fick Dr. Jozef Goldberger, en ungerskfödd läkare, i uppgift att undersöka orsakerna till Pellagraepidemierna.  Efter några månaders studier kom Goldberger fram till att det antagligen var en sjukdom relaterad till kosten. Han motiverade detta med att endast patienterna och inte vårdarna drabbades. Vårdarnas diet var betydligt mera varierad och allmänt bättre.

Trots att Goldberger inte kände till orsaken till sjukdomen så spekulerade han att en diet med mera färskt kött, ägg och mjölk skulle förhindra sjukdomen. Experiment (Goldberger och Pellagra) visade att detta också var fallet.

Trots att man relativt snabbt via experiment kunde visa att sjukdomen berodde på ensidig kost så dröjde det länge innan man fick epidemierna under kontroll … det fanns starka motståndare inom den klassiska medicinen som hade satsat sin auktoritet på att sjukdomen orsakades av bakterier eller motsvarande. Det svåraste pellagraåret var 1929 d.v.s. många år efter att orsaken till sjukdomen i princip var helt klarlagd. Ser vi här igen ett exempel på att vetenskapen går framåt en begravning i taget då professorerna inom den akademiska världen går bort och inte längre kan bromsa utvecklingen.

Man löste slutligen problemet så att man lade till Niacin i mjöl vilket ledde till att i praktiken hela befolkningen fick i sig ett minimum av vitamin B3 vilket rätt snabbt ledde till att Pellagra försvann som en epidemisk sjukdom.

Är problemet helt löst?

En intressant följd av att man lade till vitamin B3 i mjöl i USA var att 50% av patienterna på sinnesjukhusen skickades hem eftersom de blev friska. Man har senare undersökt effekten av vitamin B3 på diverse andra sjukdomar/problem och det kan finnas kopplingar till:

  • Schizofreni. Man experimenterade på 1950-1960-talet med Niacin i stora doser på flera gram (200ggr den rekommenderade dagsdosen) och resultatet var att 80% av schizofrena patienter uppfattade en klar förbättring eller botades helt.
  • Inlärnings- och beteendestörningar hos barn verkar åtminstone ibland vara kopplade till B3 vitaminbrist.
  • Minnesproblem (icke Alzheimerrelaterade).
  • Tvångsbeteende (t.ex. tvångsmässig handtvätt).
  • Behandling av alkoholism förstärks om patienten ges B3 vitamin.

Fysiska effekter:

  • Niacin sänker kolesterolnivåerna effektivt utan statinernas negativa effekter.
  • Påverkar artritis d.v.s. lika typer av ledproblem detta dock i kombination med C-vitamin och Bor.

Hur stor borde människans dagliga dos vara?

I den utvecklade delen av världen fås största delen av b3-vitaminet från kött och fisk. Jag fick plötsligt idéen att se om det finns någon korrelation mellan Niacin (via kött) och schizofreni. Tanken var att om vi ligger nära den undre gränsen för niacinintag (B3) så bör vi kunna se en trend där de länder som har den lägsta köttkonsumtionen bör ha märkbart högre frekvens av schizofreni än länder med en hög köttkonsumtion. Notera dock att hög köttkonsumtion med säkerhet också korrelerar mot en högre levnadsstandard som i sig kan tänkas minska reisken för schizofreni i viss mån.

Jag har inte plockat ut alla länder jag har hittat data för och jag är säker på att data gällande stora köttproducenter t.ex. Argentina eventuellt ger alltför höga värden på den lokala köttkonsumtionen. Resultatet blev:

Kött_versus_schizofreni

Fig. 1      Man kan se en svag men tydlig korrelation så att schizofrenifrekvensen är högst i länder med låg köttkonsumtion och lägst i länder med hög köttkonsumtion.

Jag plockade med ögonmått ut två punkter som kan tänkas representera trenden och härledde ur detta formeln:

Scizofrenifall = -1.75*Niacin(mg/d) + 290

Jag har beräknat-n iacinmängden (se t.ex.) utgående från den dagliga köttdosen … notera att det här är en mycket grov uppskattning. Vi kan nu använda formeln till att beräkna den niacinmängd som sänker schizofrenifrekvensen till noll om vi antar ett linjärt niacin/schizofreniberoende (vilket naturligtvis inte är säkert).

Medelmängden niacin per person som skulle behövas för att eliminera schizofreni blir då ungefär 160 mgNiacin(B3) per dag vilket ligger på ca. 8 ggr. den idag rekommenderade dosen.

Hur mycket mat behövs för 160 mg niacin (B3)?

  • Tonfisk ca. 700 g/dag
  • Höna 1 kg/dag
  • Jordnötter 1,16 kg/dag
  • Svamp 2.5 kg/dag.
  • Solrosfrön 1,93 kg/dag
  • Ärter 7,6 kg/dag

Notera att i alla fall utom för tonfisk är mängderna så stora att de ligger utom räckhåll i praktiken.  Sannolikt varierar behovet rätt mycket från individ till individ.  Baserat på äldre medicinska rapporter så behövs en dos på flera gram/dag utspritt på 2-3 doser för att eliminera de värsta problemen.

Personligen, jag har inte schizofreni, äter jag 500 mg niacin per dag för att jag känner att jag mår bra av det. Detta är 25 ggr den rekommenderade dagliga dosen. Sökningar gällande niacindos indikerar att risken för komplikationer ligger vid över 5  g/dag vilket är ytterligare tio ggr den dos jag tar.

Intressanta experiment

En intressant fråga är hur stor del av den epidemi av psykiska problem, depression, beteendestörningar etc. man enkelt och billigt kunde eliminera genom att i t.ex. skolan ge alla elever en c-vitamintablett kombinerat med B-vitaminer? Dosen kunde vara en brustablett av vardera sorten vilket är en mycket liten dos.

Varför denna kombination? Svaret är:

  • Ett typiskt symptom på skörbjugg är depression. Antag att depressionen hos en del av populationen kommer innan man ser de typiska fysiska skörbjuggssymtomen (tandproblem, blånader, ledproblem …).
  • Flera olika B-vitaminer har depression som ett symptom vid vitaminbrist (B3, B6, B12).
  • Brist på B3-vitamin kan ge ADHD-liknande symptom med koncentrationsproblem och olika typer av tvångsbeteenden utan att man ännu kan tala om schitzofreni.

Finns det någon större skola med parallelklasser som skulle vara intresserade av att göra ett experiment där man under en längre tid ger alla elever på en klass vitamintillskott enligt tankarna ovan och där man använder parallellklassen som referens.  Experimentet kunde göras som ett dubbelblindexperiment så att ingen i skolan vet vilkendera klassen som får placebo (bubbelvatten utan vitaminer) och vem som får vitaminer (bubbelvatten med vitaminer). Lärarnas uppgift skulle vara att rapportera om positiva/negativa beteenden samt eventuella förändringar  inlärningsprocessen. Efter t.ex. ett år kunde man analysera ordningsproblem och  frånvaro i båda klasserna kombinerat med utvärdering av elevernas skolresultat för att se om det finns någon märkbar skillnad.

 


Pointman's

A lagrange point in life

THE HOCKEY SCHTICK

Lars Silén: Reflex och Spegling

NoTricksZone

Lars Silén: Reflex och Spegling

Big Picture News, Informed Analysis

This blog is written by Canadian journalist Donna Laframboise. Posts appear Monday & Wednesday.

JoNova

Lars Silén: Reflex och Spegling

Climate Audit

by Steve McIntyre

Musings from the Chiefio

Techno bits and mind pleasers

Bishop Hill

Lars Silén: Reflex och Spegling

Watts Up With That?

The world's most viewed site on global warming and climate change

TED Blog

The TED Blog shares interesting news about TED, TED Talks video, the TED Prize and more.

Larsil2009's Blog

Lars Silén: Reflex och Spegling

%d bloggare gillar detta: