Archive for the ‘Mätning’ Category

Steganografi och hemliga meddelanden

10/02/2022

Datorarkeologi, hemliga meddelanden.

Jag tror att rätt många barn som nyligen har lärt sig läsa har gjort sina egna hemliga alfabet där det vanliga latinska/nordiska alfabetet ersätts med ”hemliga tecken” så att meddelandet blir oläsligt. Alternativt kan man använda Cesars kryptering där man tänker sig alfabetet som två ringar där man förskjuter den ena med ett visst antal steg. Om vi antar att vårt vanliga alfabet är den första ringen och vi vrider kryptoalfabetsringen tillbaka ett steg så får vi ett kryptoalfabet där

Vanlig text    Krypterad text
a          --> b
b          --> c
osv.

Ett hemligt meddelande av denna typ är naturligtvis urenkelt att lösa. Med dator kan vi naturligtvis enkelt och snabbt testa alla kombinationer men också för hand går det snabbt att titta på tex. fördelningen av de vanligaste bokstäverna i det gissade språket i meddelandet vilket ger information om hur alfabetet skall förskjutas. Ett barns hemliga alfabet är likaså väldigt enkelt att läsa om vi har en vettig längd på meddelandet. Vi kan ur ordlängd etc. gissa bokstäver och rätt enkelt få fram det hemliga alfabetet.

Enkla substitutionsskiffer dvs. förskjutning av bokstäverna i alfabetet eller hemliga symboler i stället för det normala alfabetet är så enkla att lösa att man kan säga att ett meddelande som kodats på detta sätt egentligen endast visar att meddelandet inte är tänkt att läsas rakt upp och ner.

En intressant detalj är Stanley Kubricks film ”Ett rymdäventyr 2001” där skeppets tänkande dator heter ”HAL”. Av en slump 😉 så är HAL ordet IBM förskjutet en bokstav i riktning mot A d.v.s. IBM har kodats met ett Caesarskiffer försjutet endast ett steg i riktning mot A. Om man vill göra en textfil besvärlig att läsa men helt utan risk att man tappar lösenordet till texten så kan man koda en text med Unixverktyget rot13 som alltså förskjuter alfabetet med 13 steg. Säkerheten är lika med noll men det går inte att se vad texten innehåller bara genom att skumma av den med ögat.

Steganografi

Steganografi är tekniken att gömma ett meddelande tex inom ett skenbart oskyldigt meddelande. Antag att en medeltida krigsherre börjar ha slut på krutet och skickar ett meddelande till den egna kungen där han ber om 1500 kaggar fläsk, 20 kärror bröd … och på slutet konstaterar han krigståget måste avbrytas om han inte snabbt får mera mjöl, smör och salt … där den hemliga betydelsen kunde vara ‘mjöl=kol’, ‘smör=svavel’ och ‘salt=salpeter’ (de tre ingredienserna i svartkrut).

Under antiken kunde en kung t.ex. skicka en slav med ett hemligt meddelande så att håret rakades av huvudet på slaven varefter meddelandet skrevs på skalpen. Då håret hade vuxit ut skickades slaven till mottagaren som rakade av håret igen och läste meddelandet. Andra alternativ kunde vara att lägga in ett meddelande i ett bakat bröd … alternativen är många.

Vi såg i föregående inlägg hur man kan generera morsekod med hjälp av ett dataprogram. Ett kort meddelande, några ord, går på kanske 20 sekunder och ljudfilens längd är ungefär en miljon tecken. Antag att jag, den hemliga agenten, vill skicka en femsidig rapport till min uppdragsgivare utan att väcka uppmärksamhet. Jag kan då ta i bruk mitt morseprogram och regelbundet under en tid skicka t.ex. hälsningar till olika personer med morse. Meddelandet byts med någon dags mellanrum och fienden tittar på varje meddelande … men hittar inget.

Jag har redan tidigare, med tanke på användning för steganografi, modifierat både ljudfilerna och pauserna jag använder för att bygga upp meddelandena så att det finns brus i signalerna t.ex. med toppvärdet ungefär 8- bitar av den 16 bitars amplitud ljudfilen tillåter. Bruset ligger då på ungefär 0.5% vilket inte är speciellt störande.

Antag att jag vill skicka min rapport som innehåller 10000 tecken inbakad i morsesignalen. Min text består av tecken som alla ryms i en byte (8 bitar) som i sin tur ryms inom bottenbruset i min morsesignal. Jag behöver nu endast via någon annan kanal meddela min uppdragsgivare att ”Kom ihåg att gratulera den brittiska drottningen då hon fyller 100 år”. Hundra i detta meddelande betyder att jag byter ut vart hundrade talvärde i bruset i meddelandet mot en bokstav. Bruset kommer att öka marginellt men inte så att man enkelt hör skillnaden. Jag måste då skriva ett morsemeddelande som producerar en morse wav-fil med längden större än en miljon talvärden … enkelt.

Jag lägger ut den mixade morsefilen på den vanliga platsen för min morsehobby och min uppdragsgivare laddar ner filen och kör ett program som plockar ut vart hundrade talvärde i wav-filen och dumpar resultatet i en textfil som är min återskapade rapport.

Jag har alltså dolt en textrapport på 10000 tecken i ett oskyldigt morsemeddelande som gick på kanske 20-30 bokstäver. Notera att den sända dolda texten naturligtvis i sig kan vara krypterad innan den läggs till bruset i morsekoden. Det är naturligtvis självklart att texten inte behöver läggas in med 100 teckens intervall utan jag kan använda en slumptalsgenerator som genererar en lämplig slumptalssekvens som säger hur långt avståndet är mellan det hemliga dokumentets bokstäver. Det är också sannolikt att jag endast vill lägga in text i bruset i pauser inte i den reguljära sinusvågen jag använder som ljud eftersom det kan verka misstänkt in enstaka sampel ligger mycket nära noll då sinusvågen ligger nära ett. Jag kan hoppa över områden där jag har en morseton. Både jag och min uppdragsgivare måste naturligtvis kunna generera samma sekvens. Det är självklart att det enkelt går att gömma stora mängder text i en ljudfil som ovan men också självklart att det krävs en del funderande över hur man bäst döljer att det ligger ett meddelande inbakat i filen.

Bilden visar ljusrött brus med amplituden 0.125 (signalen har amplituden 1.0). Om vi antar att ljudfilen är kodad som 16-bitars PCM så kan vi lägga in data med ett största värde 8192 utan att vårt hemliga meddelande sticker ut på något sätt.

Digitalbilder innehåller också enorma mängder data. En modern digitalkamera producerar bilder vars storlek är tiotals megabyte d.v.s. tiotals gånger större än morseljudfilen. Varje bildpunkt innehåller information om tre olika färger och varje färg kodas i en eller flera byte. Det är självklart att jag kan koda information, om jag så vill i pixlar i bilden t.ex. så att jag modifierar färgdata så att jag modifierar en färg så att om färgens värde är ”jämnt” d.v.s. 2, 4, 6 … 254 så skall färgen tolkas som en etta d.v.s. en bit med värdet = 1. På motsvarande sätt kan jag koda en nolla så att jag modifierar ett färgvärde till ”udda” som då tolkas som en bit=0. Förändringarna jag behöver göra är extremt små och sannolikt odetekterbara speciellt som mitt meddelande matar in varierande bitar. Slutresultatet är en bild som ser helt normal ut men i vilken jag kan koda in mängder av dolda data. Olika typer av steganografiska metoder används idag till att koda in t.e.x. copyright information i bilden vilket gör att det i efterhand går att bevisa vem som ägde rättigheterna till bilden.

Notera att det inte är självklart att ovan beskrivna kodningar överlever packning. Om jag konverterar min morse ljudfil till mp3 formatet så kommer filen att packas ihop betydligt. En mp3 kodning är inte förlustfri vilket betyder att om jag packar upp filen tillbaka till wav så har sannolikt mitt hemliga meddelande också förstörts. Samma princip gäller bilder. Enkla hemliga kodningar kan förstöras av packning till något icke förlustfritt format.

En motståndare som försöker hitta mina dolda meddelanden skulle sannolikt bli mycket misstänksam om jag ibland skulle skicka mp3 morsemeddelanden och andra gånger wav meddelanden. Lösningen skulle naturligtvis vara att alltid skicka wav-filer som är opackade.

Morseljudsignal till text

09/02/2022

Detta är ett inlägg i serien datorarkeologi.

I tidigare inlägg har jag visat hur man automatiskt kan översätta skriven text till morse och därefter generera en ljudfil som man t.ex. kunde köra igenom en radiosändare och om effekten är tillräckligt stark och reflexionerna i atmosfären optimala så kan man i princip höra morsemeddelandet överallt på jorden.

Vad gör jag om jag inte kan morse d.v.s. meddelandet är bara en okänd serie blippar. Kan jag skriva ett program som läser in morsekoden som ljud och översätter ljudmeddelandet till text? Det visar sig att detta, om signalen är optimal, är mycket enkelt att göra. Amplituden på alla ljudsignaler är exakt lika och alla pauser har någon av tre exakt definierade längder.

Signalen har följande utseende om jag tittar på ljudfilen med hjälp av programmet Audacity:

Vi ser att signalen är extremt ren och störningsfri. Pauser har ljudnivån noll helt utan något brus och signalen är en sinusvåg med konstant amplitud.

För att kunna läsa av signalen likriktar vi den först d.v.s. vi tar absolutvärdet av signalen så att alla negativa värden under strecket i figuren blir positiva. Signalen varierar våldsamt mellan 0 och ca. 0.5 och för att vi skall kunna bedöma om vi detekterar ljud eller tystnad filtrerar vi signalen så att vi beräknar medelvärdet av ett antal ljudvärden. Om medelvärdet är klart positivt så hör programmet ljud och då medelvärdet ligger mycket nära noll så är det tyst.

Programmet har en funktion/subrutin. Jag skrev denna gång programmet i språket python. Översättningen går till så att jag samlar ihop fragment av korta ljdsignaler (*) och långa ljudsignaler (-). Ljudsignalerna läggs till en textsträng ända tills vi stöter på en ”teckenpaus” d.v.s. en paus mellan bokstäver. Vi skickar nu textsträngen t.ex. ‘*-‘ till funktionen translate_char(tecken) som jämför morsetecknet med alla morsetecken i morsealfabetet och därefter skriver ut resultatet som bokstaven ‘a’ i detta fall. Vi nollar nu morsesträngen och börjar samla * rep – för följande tecken. För att läsa vad programmet gör så hoppar vi över funktionen translate_char och börjar läsa kommandoraden på vilken vi vill ha endast en parameter d.v.s. ljudfilens namn. Ljudfilen kan vara en mp3- eller en wav-fil. Om vi ger en mp3-fil så konverterar programmet automatiskt mp3 filen till en wav-fil eftersom wav-filen är lättare att hantera rent tekniskt.

#!/home/lasi/miniconda3/bin/python
# Name=morse_receiver.py
# The program reads an audio file and converts the audio back to plain text.
# The analysis works as follows:
# Read the message and record the lengths of sound and silence to a file.
# Determine the length of dots and dashes and the lengths of silence.
# Create a new file vith * - and the character interval + word interval.
# The file can now be analyzed for morse patterns and converted into text.
# This is free code. Use on your own risk.

import wavfile
import sys
import os


def translate_char(m_string):
	m_string.strip()
	if (m_string=="*-"):
		return "A"
	if (m_string=="-***"):
		return "B"
	if (m_string=="-*-*"):
		return "C"
	if (m_string=="-**"):
		return "D"
	if (m_string=="*"):
		return "E"
	if (m_string=="**-*"):
		return "F"
	if (m_string=="--*"):
		return "G"
	if (m_string=="****"):
		return "H"
	if (m_string=="**"):
		return "I"
	if (m_string=="*---"):
		return "J"
	if (m_string=="-*-"):
		return "K"
	if (m_string=="*-**"):
		return "L"
	if (m_string=="--"):
		return "M"
	if (m_string=="-*"):
		return "N"
	if (m_string=="---"):
		return "O"
	if (m_string=="*--*"):
		return "P"
	if (m_string=="--*-"):
		return "Q"
	if (m_string=="*-*"):
		return "R"
	if (m_string=="***"):
		return "S"
	if (m_string=="-"):
		return "T"
	if (m_string=="**-"):
		return "U"
	if (m_string=="***-"):
		return "V"
	if (m_string=="*--"):
		return "W"
	if (m_string=="-**-"):
		return "X"
	if (m_string=="-*--"):
		return "Y"
	if (m_string=="--**"):
		return "Z"
	if (m_string=="*--*-"):
		return "Å"
	if (m_string=="*-*-"):
		return "Ä"
	if (m_string=="---*"):
		return "Ö"
	if (m_string=="*----"):
		return "1"
	if (m_string=="**---"):
		return "2"
	if (m_string=="***--"):
		return "3"
	if (m_string=="****-"):
		return "4"
	if (m_string=="*****"):
		return "5"
	if (m_string=="-****"):
		return "6"
	if (m_string=="--***"):
		return "7"
	if (m_string=="---**"):
		return "8"
	if (m_string=="----*"):
		return "9"
	if (m_string=="-----"):
		return "0"
	# Primitive error check
	print("Error m_string=",m_string)
	print("Len=",len(m_string))
	return "?"


if (len(sys.argv)<1) or (len(sys.argv)>=3):
	print("Usage: morse_receiver.py snd_file")
	exit(0)

# We only process wav-files. If I get a mp3 then convert it to wav
# Add further conversions here as nedessary.
# Filtypen bestäms utifrån filnamnet inte från magisk filtyp.
snd_file = sys.argv[1]
print("File to process: ",snd_file)

if snd_file.endswith('.mp3'):
	print("MP3 file detected")
	# Convert to a wav file
	# model ffmpeg -i song.mp3 -ar 44100 song.wav
	cmd = "ffmpeg -i "+snd_file+" -loglevel quiet -ar 44100 -y "+snd_file+".wav >/dev/null"
	snd_file=snd_file+".wav"
	print("Converted file="+snd_file)
	# Convert the mp3 file to wav before processing.
	os.system(cmd)

f = wavfile.open(snd_file, 'r')
frames=f.num_frames
wav_data=f.read_float(frames)
ampl=0
i=0
snd = False
nosnd = True
pstart=0
sstart=0
my_ch = "";
for d in wav_data:
	ampl=(9*ampl+abs(d[0]))/10
	i=i+1
	if((ampl>0.1) and (nosnd==True)):
		sstart=i
		l = i-pstart
		if(l<5000):
			sp=0
		elif((l>5000) and (l<20000)):
			print(translate_char(my_ch)+"  "+my_ch)
			my_ch=""

		else:
			print(translate_char(my_ch)+"  "+my_ch+"\n")
			my_ch=""
		snd = True
		nosnd = False
	elif((ampl<0.01) and (snd==True)):
		pstart = i
		if((i-sstart)<5000):
			my_ch = my_ch + "*"
		else:
			my_ch = my_ch + "-"
		snd=False
		nosnd=True

Vi kontrollerar om vi fick en mp3-fil som parameter. Om detta är fallet så bygger vi upp ett kommando som en textsträng där programmet ffmpeg används för att göra en wav-kopia av mp3-filen. Kommandot utförs av det externa programmet ffmpeg genom att anropa det via system() d.v.s. vi gör inifrån programmet detsamma som vi skulle ha kunnat göra på kommandoraden.

if snd_file.endswith('.mp3'):
	print("MP3 file detected")
	# Convert to a wav file
	# model ffmpeg -i song.mp3 -ar 44100 song.wav
	cmd = "ffmpeg -i "+snd_file+" -loglevel quiet -ar 44100 -y "+snd_file+".wav >/dev/null"
	snd_file=snd_file+".wav"
	print("Converted file="+snd_file)
	# Convert the mp3 file to wav before processing.
	os.system(cmd)

Vi läser nu in hela ljudfilen i minnet, PDP11 skulle storkna i detta skede eftersom användarminnet skulle ta slut innan ens halva filen är läst … fint att ha lite mera minne i en modern dator! Vi skapar också några hjälpvariabler som vi behöver lite senare. Om jag skulle dekoda en fil på PDP11 så skulle jag läsa in data från skiva i stället för att ha filen i datorns minne. Att använda skiva i stället för minnet fungerar precis lika bra men hastigheten är kanske en tusendel jämfört med att jobba direkt mot minne. PDP11 från 1970-talet skulle tugga länge på en dekodning av en 20 sekunders ljudfil. Gissar någon minut.

f = wavfile.open(snd_file, 'r')
frames=f.num_frames
wav_data=f.read_float(frames)
ampl=0
i=0
snd = False
nosnd = True
pstart=0
sstart=0
my_ch = "";

Vi börjar nu läsa in värden, ett datavärde i taget från filen som alltså ligger i centralminnet (RAM) och beräknar ett flytande medelvärde över tio ljudvärden. Experiment visade att detta gav en pålitlig detektion. Jag är övertygad om att en annan filtrering skulle fungera lika bra. För en annan ljudfil genererad av en utomstående producemt så skulle vi antagligen behöve experimentera här.

for d in wav_data:
	ampl=(9*ampl+abs(d[0]))/10

Vi går nu vidare och ser när vi stöter på ljud och lägger då på minnet vilket ljudvärde 0 … vi hade och kontrollerar samtidigt om vi går från noll (icke ljud) mot ljud (större än ca. 0.1). Vi kan nu skilja på en ljudpuls och en paus. Genom att vi lagrade start och slut på pulsen så kan vi genom subtraktion beräkna längden på en ljudpuls eller en paus. Om vi stötte på en kort ljudpuls så lägger vi till ‘*’ i slutet av variablen my_ch . Om vi stötte på en lång ljudpuls så lägger vi till ‘-‘. Om vi stötte på en mellanlång eller lång paus så vet vi att tecknet är färdigt för översättning. Om vi stöter på en riktigt lång paus så vet vi att ett ord har passerats och då skriver vi ett radbyte för att underlätta läsningen.

Hela detektorn har då följande utseende:

for d in wav_data:
	ampl=(9*ampl+abs(d[0]))/10
	i=i+1
	if((ampl>0.1) and (nosnd==True)):
		sstart=i
		l = i-pstart
		if(l<5000):
			sp=0
		elif((l>5000) and (l<20000)):
			print(translate_char(my_ch)+"  "+my_ch)
			my_ch=""

		else:
			print(translate_char(my_ch)+"  "+my_ch+"\n")
			my_ch=""
		snd = True
		nosnd = False
	elif((ampl<0.01) and (snd==True)):
		pstart = i
		if((i-sstart)<5000):
			my_ch = my_ch + "*"
		else:
			my_ch = my_ch + "-"
		snd=False
		nosnd=True

Intresserade läsare kan lyssna på morsekoden nedan. Min reaktion på denna morsemottagare är egentligen att det visade sig vara mycket lättare att skriva mottagaren än jag hade väntat mig.

Om någon läsare vill skriva en mottagare för svårare morsekod t.ex. morsekod där alla tidsvärden varierar då en människa sänder morse så gissar jag att jag skulle spela in alla meddelanden. Därefter skulle jag skriva en dynamisk analysator som gissar längden på kort/långt ljud samt länden av pause. Dv.s. jag skulle mäta längden på alla tidsvärden separat för vatje fil.

En annan komplikation är att signalamplituden sannolikt skulle kunna variera rätt mycket. Även detta skulle kräva separat hantering så att gränsvärdet för ljud/tystnad skulle kunna väljas utgående från signalen i stället för att ges ett fast värde som i detta exemple.

Nir Shaviv en intressant klimatforskare

28/11/2019

Jag har under ett antal år följt med Nir Shaviv i klimatdiskussionen. Shaviv hör till gruppen klimatforskare som, baserat på tung forskning och experiment, uppfattar att den egentliga drivkraften bakom klimatförändring genom historien är solen och inte t.ex. koldioxid.

Mitt intresse för Nir Shaviv ses kanske bäst i min vebbok (Science Fiction) ”Mars” där Nir Shaviv för ett antal år sedan figurerar i en klimatdiskussion under en färd till planeten Mars.

Nedanstående video (för personer som förstår engelska) är intressant och ställvis rätt rolig då Nir Shaviv är en bra talare!

Bränt barn skyr elden (Johan Silén)

24/11/2019

Vetenskapen igår

Det hemska vi sett och läst om i historien borde vi noga fundera över. Vad kan det lära oss? För tillfället ser det ut som, att det brända barnet inte ens vågar titta efter vad som brann, utan bara tittar ut mot kylan på dom andra, som inte förstod att tända en brasa mot kölden. Jag blev mycket förvånad då jag började rota i det tabubelagda som brann upp under 1930- och 1940-talen. Vad var det för ideologi som låg bakom? Vad var det som fick människorna att helt ty sig till sin känsla utan att se på verkligheten ens lite rationellt? Var det en övertro till vetenskapen, en tro att människan kan behärska naturen, förädla sig själv genom att använda vetenskapliga metoder som eugenik? Man motiverade med vetenskapliga argument som att vi bör sterilisera människogrupper, av olika slag av många olika skäl, för att rena oss som grupp. Allt var baserat på vetenskap! Man trodde att man förstod. Det man trodde sig förstå använde man sig av, för att förändra samhället på det sätt man hade byggt upp till sitt känslomässiga mål. För att uppnå detta sista mål, lät man ändamålet helga medlen. Man började förfölja oliktänkande både vid brasan och ute i kölden.
Den känslomässiga stormen ledde till kanske hundra miljoner döda. Vi blev så skrämda av det vi såg att vi inte ens vågade försöka förstå det. Jorden klarar sig nog alltid. Nya apor träder fram och tar över. Allt det här går i princip tillbaka till teorier om hur vi förstår oss själva och den mycket mera komplicerade världen vi lever i. Det olyckliga i situationen är att mycket av den gröna ideologin som vi ser i vår omgivning direkt baseras på de tankar nazismen byggdes på. Likaså handlingsmönstret, där man engagerar ungdomen för att okritiskt föra brandfacklan, har man kopierat från 1920-talet. För mig var det en chock att bli medveten om det här, läs tex. historikern
Peter Staudenmaiers forskning om saken. Naturligtvis blir all kritik nedsablad så läs därför hur han resonerar och vilka källor han har. Flaggornas färger har ändrat, rött har blivit grönt och kallas nu eco socialism men borde enligt historisk forskning kallas eco fascism. I slutändan är det meningen att man inte skall behöva bry sig om laglighet då man omdanar samhället och den mänskliga naturen, (Rudolf Bahro, grön eco socialist ideolog, sökande efter den gröna Adolf, Bahro Logik, p. 350. Bahro jobbade länge som professor i Berlin och utgav några mycket kontroversiella böcker).

Vetenskapen idag

Idag hänvisar vi för våra beslut åter till ”vetenskap”. För mig är vetenskap observationer, dvs råa data och den förståelse det här bidrar till. Förståelse är i sista hand en modell, logisk eller känslomässig, enligt vilken vi snabbare och enklare kan leda tanke till handling. Vetenskap kan inte vara en teori som strider mot observationer. Därför finns det ett stort antal arbeten som gör sken av att vara vetenskapliga men som direkt strider mot observationer. Vi har idag alla möjligheter att kollektivt lära oss förstå, hur både vi och vår omgivning fungerar. Datorer kan vi också använda oss av för detta, men det finns begränsningar i hur dom kan användas.

Om vi har en så enkel uppgift att uppskatta mängden harar och rävar, så får vi problem. Hararna äter av gräset på en obegränsad gräsmatta, och rävarna äter hararna. Harar och rävar förökar sig enligt hur mycket mat dom hittar. Man kan av det här göra en enkel modell, Lotka-Volterra ekvationerna, som beskriver fenomenet väl. Mängden harar kommer att variera men på ett sådant sätt att om en hare har gömt sig någonstans, så kan systemet inte berätta något överhuvudtaget om framtiden! Den märkliga egenskapen kallas för kaos.

Kaos är svårförstått och missbrukat begrepp som på klar svenska kanske bäst översätts som oförutsägbar. Omfördelningen av värme på Jorden följer liknande lagar. Vi styrs av icke lineära kaotiska system som belastas med för mycket energi för att vara stabila (systemet kallas turbulent). En godtyckligt liten brist i noggrannheten för hur systemet ser ut i början, leder till att vi inte ens i princip kan säga mycket om dess framtid.

Förutsägelsen av vädret görs annorlunda. Vi förstår att systemet är instabilt (fjärils effekten) och därför kontinuerligt behöver rättas till genom observationer. Vi styr modellerna med en tvångströja av observationer. Det samma kan vi inte göra med klimatet. Modellerna klarar inte av att beskriva det förgångna eller det framtida klimatet, och skulle därför behöva motsvarande begränsning.

Vi vet att koldioxiden har en svag uppvärmande effekt, men eftersom klimatsystemet har ett stort överskott av energi och naturen strålar ut överskottet på ett icke lineärt sätt, är systemet kaotiskt och oförutsägbart. Om jag gör modellen för känslig exploderar den efter någon obestämd tid. Om jag gör den för okänslig får jag ett jämt och stabilt och ointressant klimat. Därför har vi en situation likt den med harar och rävar.

Modellerna styrs därför mot de mål modellbyggaren strävar efter. Därför
är det orimligt att genom ett teoretiskt (modellbyggar) resonemang göra förutsägelser som inte ens i princip kan vara giltiga. Ännu värre är det att tillämpa dessa orimliga resultat till att styra samhällets utveckling som man nu gör.

Eugeniken ledde till förändringar i folkgrupper med ”fel gener” medan styrningen nu river upp hela grunden för vår tekniska kultur. Den som sist följer den här styrningen blir vinnaren, Kina eller Indien? Den gröna rörelsen håller därför på sätt och vis på att likvidera den Tyska industrin och därmed den Europeiska välfärden.

Referenser och mera läsning:

Observera att ett informationskrig gör att mycket på internet är opålitligt. Wikipedia är bra för exakta vetenskaper men tvivelaktigt eller vinklat för ideologiska frågor. Detta för att mängden aktivister bestämmer balansen i inläggen, inte sanningshalten!
American Thinker, konservative Mark Musser: Nazi Ecology. Det finns rätt många artiklar om ämnet med den gemensamma nämnaren Musser. Forumet mycket konservativt.
Ecofascism Revisited, Janet Biehl, Peter Staudenmaier. 2011, anarkist. Staudenmaier, professor i historia, har grävt mycket i vem, hur och varför. Visar klart utvecklingen och influens kedjorna i ekologi frågan.
Green Tyranny, Rupert Darwell, 2019. Humoristisk bitsk bok om frågeställningarna.
Vem är jag, Johan Silen? Jobbat rätt så tvärvetenskapligt med plasmafysik, norrskensforskning, rymdfysik, klimatforskning,
klimatmodeller och nu senast mest med icke lineära matematiska frågor och AI (artificial intelligence). Pensionär.

 

Att stämma f-hålen på en fiol

27/10/2019

F-hålen på en fiol bidrar, då de är rått justerade, till att ge fiolen en oboeliknande klang. Jag var länge omedveten om denna typ av ton. Min son, yrkesviolinist, använde ett lånat högklassigt instrument ägt av någon av de finlandssvenska stiftelserna. Då jag provspelade instrumentet hörde jag tydligt strängens grundton som den låter på alla instrument men ovan på denna fanns en varm oboeliknande ton som ger en mycket trevlig karaktär åt tonen.

Bekantskapen med toppinstrumentet gav mig orsak till att börja söka efter den saknade tonfärgen. Rätt mycket experimenterande ledde mig fram till att tonen genererades av de svängande ”vingarna” vid f-hålen. Vingarna drivs av de stora svängande områdena som man hittar då man går från vingspetsen längs fiberriktningen (se bild). Förutsättningen för att vingarna skall fungera korrekt är att de är mekaniskt impedansanpassade till de svängande områden som driver dem. Min uppfattning är att det är möjligt att knacka sig till när f-hålsvingarna är korrekt injusterade, mera om detta nedan.

Fhålsvinge.png

Justeringsprocessen är:

  • Justera botten och lock så att tonen blir jämn och klar men lämna vingarna helt i fred. Vi vill att knacktonen då vi knackar från vingspetsen mot det drivande området skall vara högre än i det drivande området.
  • Om det drivande området klingar högre än tungan måste det slipas tills knacktonen är lägre än i tunga, Detta betyder sannolikt rätt mycket arbete med att få locket i balans på nytt d.v.s. alla kvadranter måste slipas på nytt.
  • Slipa mycket försiktigt, 5-10 drag max, en vinge som klingar högre än det drivande området. Effekten hörs mycket kraftigt men den tenderar att delvis backa tillbaka inom minuter till timmar. Det lönar sig att göra små justeringar över flera dagar och att lyssna noga. Var extremt noggrann med att inte slipa för mycket eftersom detta betyder att hela locket måste bearbetas före att vingens stämning skall vara möjlig.

Knackning för att mäta impedansanpassningen

Knacka försiktigt stegvis från spetsen av vingen mot det stora svängande området och lyssna på tonhöjden. För en korrekt justerad vinge vill vi ha ungefär samma knackningstonhöjd i vingen som i det svängande området, vi har då mekaniskt impedansanpassat de två svängande områdena. Vi justerar vingarna sist eftersom en justering kräver att vingens knackton före justering måste vara högre än drivområdets knackton. Vi knackar i många steg mellan områdena eftersom detta gör det lättare att uppfatta skillnader i tonhöjd.

Notera att då vi slipar vingen från baksidan med magnet så är effekten dramatisk. Börja med maximalt t.ex. 5 slipdrag med magneten och lyssna på resultatet. Om du slipar för mycket så lönar det sig att vänta några dagar innan man ger sig på de stora områdena för att kompensera. En slipad yta ger genast en rätt stor effekt strax efter slipningen, en effekt som klingar av delvis inder minuter, timmar och dagar. Om du har klantat så vänta några dagar eller veckor innan du jobbar vidare … det kan hända att problemet löser sig själv.

Vilken är skillnaden?

Vilken är skillnaden mellan en stämd vinge och en ostämd vinge? Jag gjorde ett enkelt test där jag stämde D-strängens vinge på min ”Klezmerfiol” som är en billig kines jag har jobbat kanske två år med att akustiskt stämma.

Jag spelade in tonen E på d-strängen eftersom jag uppfattar att denna ton på det här instrumentet har en kraftig pålagd ”oboeton”.  Jag spelade in ett antal stråkdrag med endast tonen E på programmet Audacity. Därefter lät jag programmet rita ut spektret för denna ton.

Fhål_D__raw.png

Vi ser att vi i den stämda tungan har ett mycket jämnt och kraftigt övertonsspektrum.

Följande skede var att lägga till massa i tungan så att den igen blir ostämd. Jag gjorde detta genom att limma maskeringstejp på tungan men inte över själva f-hålet. Resultatet är vara att massan ökar vilket gör tungan ostämd. Spektret mäts igen på samma sätt som tidigare.

Fhål_D_tejpat.png

Vi ser att övertonerna från fiolen kraftigt försvagades och tonen försämrades. Observera att de två första övertonstopparna dämpades med 9-10 dB vilket betyder att den absoluta ljudstyrkan minskar till en tiondel! Människans öras känslighet är dock logaritmisk vilket gör skillnaden mindre dramatisk men skillnaden är stor.

Notera!

Ovanstående spektra är inte helt representativa! En korrekt bild fås naturligtvis endast om jag spelar in den ostämda tungan innan den justeras varefter jag gör samma sak efter att tungan justerats. Problemet är att jag tänkte på att göra mätningen först då tungan justerats. En tunga till vilken ja lägger massa uppför sig naturligtvis inte exakt som den ursprungliga vingen som hade både mera massa men också mera styvhet.

Notera!

Det är skäl att gå mycket försiktigt fram. Justera i mycket små steg och låt instrumentet vila mellan justeringar och spela på instrumentet. Då du uppfattar att tonen är vad du vill ha är det skäl att sluta justera. Det är mycket lätt att bli alltför girig så att man förstör ett instrument genom att justera alltför långt varefter det inte längre går att backa!

Notera!

Jag uppfattar att det bästa sättet att lära sig att justera fioler är att utgå från t.ex. billiga kinesiska fioler i prisklassen 100 – 200 dollar på Ebay. Instrumenten är tekniskt väl byggda men ljudet på det ojusterade instrumentet är inget vidare eftersom fabriken sannolikt väljer ut väljudande instrument som säljs till högre pris.

 

Om forskarna inte är överens så spelar det ingen roll?

25/09/2019

Den här artikeln utgår från en diskussion på Facebook baserad på en artikel på svenska yle d.v.s. den finlandssvenska radio/tv producentens hemsida. Artikeln är skriven av Marcus Rosenlund som i ett antal år har producerat vetenskapsprogram ”Kvanthopp” i radion. Artikeln hittar du här:

Är alla klimatforskare överensom klimatkrisen och dess orsaker? Nej, men spelar det nån roll?

Artikeln inleds med sloganen:
Det finns gott om dem som är beredda att kasta försiktighetsprincipen på sophögen och glatt ignorera alla risker och kasta mer kol under pannan, baserat på den pyttelilla sannolikheten att några enstaka tvivlare har rätt, skriver Marcus Rosenlund.

Problemet med försiktighetsprincipen är att en in absurdum driven försiktighet lamslår samhället och leder till onödigt lidande och död oftast bland samhällets svaga. Ett exempel på detta är dagens klimatfanatism som i ”försiktighetsprincipens” namn försöker köra ner fossila kraftkällor och den fossilfria krärnkraften för att ersätta dem med sol och vind.

Resultatet har blivit att energipriserna i de värst drabbade områdena  ligger ca. tre gånger högre än energipriset i områden där man inte kör ner pålitlig energi (läs Tyskland och Danmark). Resultatet är att allt större grupper människor blir avstängda från eltillförsel och man har inte råd att värma bostäderna under vintertid, något som är helt nödvändigt under vintern i nästan  hela Europa. Vi kan också se hur storföretag utlokaliserar energikrävande företag eftersom det är omöjligt at konkurrera med omvärlden om en av de grundläggande råvarorna energi prissätts  skyhögt över omvärldens energipris.

Konsensus 97?

Det har gjorts ett antal undersökningar som strävar efter att visa en i stort sett total konsensus bland vetenskapsmän gällande global uppvärmning utan att dock fråga om de små förändringar vi har kunnat se är nyttiga eller farliga.

97% konsensus borde egentligen helt självklart vara 100% eftersom frågorna man har ställt är så generella och självklara att varje person som har följt debatten borde kunna svara ja.

Har temperaturen stigit sedan den förindustriella perioden? (Svar: Ja)

Temperaturen har lyckligtvis stigit 0,8 … 1 C sedan 1800-talets nödår då en betydande del av Nordens befolkning dog till följd av kyla och missväxt.

Har människan någon andel i den observerade temperaturstegringen? (Svar: Ja)

Det verkar sannolikt att ökande koldioxidhalt leder till en marginell temperaturstegring. Det finns dock inget konsensus gällande storleksordniongen på temperaturstegringen. Uppskattningarna ligger mellan ca. 0,25 … 3 C. De flesta nya publikationer tenderar att ha en mycket låg klimatkänslighet.

Det är också sannolikt att förändringar i människans livsmiljö runt mätstationer på marken har gett en lokal temperaturstegring UHI (Urban Heat Island). UHI är en följd av ökande energianvändning t.ex. trafik, luftkonditionering, avgaser från jetplan på växande flygfält, asfaltering av områden nära termometern e.t.c. Det är ett faktum att en storstad är varmare än den kringliggande landsbygden men detta har ingenting med en global uppvärmning vi CO2 att göra.

Betyder ovanstående konsensussvar att vi bör köra ner vårt teknologiska samhälle med död och lidande som följd? En vansinnigt tillämpad försiktighetsprincip leder till precis de dödsfall man säger sig försöka förhindra. Det är intressant att notera att antalet dödsfall till följd av kyla under vintern är 10 – 20 ggr högre än dödsfallen till följd av värme under några extrema sommardagar. Människan är faktiskt en varelse som endast kan leva i tropiska områden utan tekniska hjälpmedel, vi uppskattar värme.

Artikeln konstaterar: ”Med andra ord, till och med då det inte råder full säkerhet om huruvida någonting är farligt eller inte, så ska myndigheterna förhålla sig till detta någonting med en sund misstänksamhet, som om det vore farligt. Guilty until proven innocent, liksom. ”

Vi förväntas alltså svänga upp och ner på det som har varit grunden för hela vårt rättssamhälle. Skyldig tills du kan bevisas vara oskyldig … det här argumentet har legat till grund för alla diktatorers agerande och spåren förskräcker.

Ett argument för den såkallade klimatkrisen har varit ”extremväder” vilket naturligtvis är ett idealverktyg för personer som driver en extrem nedmontering av vårt västerländska samhälle.  Extremväder orkaner, stormar, tornadon och generellt oväder är farliga men de har alltid funnits. Däremot är de idealiska som medel för att via media föra fram skrämselpropaganda då vi hela tiden någonstans på jorden har någon typ av extremväder. Media kan alltså kontinuerligt visa på situation er där naturens krafter åstadkommer skador och död och man implicerar att detta är en följd av ökande stormar och extremväder trots att det som händer är att media lägger focus på global rapportering av olyckor och naturkatastrofer.

Hur stor har risken för att dö i oväder?

Ovanstående argument att den extremvädershysteri vi ser hela tiden i media är skenbar och skapad av media kan enkelt illustreras med riktiga data.

Hur stor är risken idag att dö i extremväder jämfört med gångna tider? Nedanstående kräver sannolikt inte många kommentarer. Notera att jordens befolkning har ökat mycket kraftigt under den illustrerade perioden. Döm själv:

Deaths_extreme_weather

Om vi tittar på dödsfall genom t.ex. torka så hittar vi:

Death_drought

Vi ser exakt samma trend här.

Vi har sedan 1970-talet matats med profetior om världsomfattande svält (Ehrlich) men det som har hänt är att vi har fått en extrem epidemi av övervikt, inte svält! Vi har matats med skrämselprofetior om att havsytan kan stiga med flera meter fram till århundradets slut men vi kan inte se några som helst tecken på en katastrofal förändring i hastigheten med vilken havsytan stiger, det finns någon typ a konsesnsus som styrks av havsnivåmätare (tide gage) att havet stiger med ungefär 30 cm på hundra år. Hastigheten är ungefär lika snabbt som den har varit de senaste århundradena.

Notera hur man i vårt kära grannland betalar lön till människor som skall planera för en tid då (vatten) strömmen genom Stockholm byter riktning och för in saltvatten i de bakomliggande sjösystemen.

Vad händer i verkligheten? Det finns en havsnivåmätare i Stockholm som visar att havsytan långsamt sjunker till följd av landhöjningen (situationen är densamma i Helsingfors). Det finns inga tecken på att trenden skulle vara på väg att snabbt förändras.

Sea_level_Stockholm

Problemet är att vi har en politisk elit som är totalt ”clueless” om vi ser positivt på dem eller så är de landsförrädare som avsiktligt försöker förstöra vår västerländska civilisation.

Skall vi i försiktighetens namn montera ner precis den tekniska civilisation som har gjort att vi aldrig har levt så säkert som nu? … sinnesjukt!

Bortskämda studenter i Cambridge

24/09/2019

De åtgärder Europas gröna studenter eftersträvar leder, om de implementeras, till miljoner männioskors död. Benny Peiser diskuterar Europas försök till självmord.

Vi vet idag att 10-20 ggr fler människor dör i Europa till följd av kyla än värme … ändå vill man sänka temperaturen. Det är väldigt intressant att samtidigt se att ingen kan säga vilken den eftersträvade temperaturen är.

Det finns inte idag några som helst objektiva mätningar som skulle visa mätbara effekter av de miljarder mänskligheten har flyttat från skattebetalarnas fickor till världens lilla klick superrika. Skall vi faktiskt satsa en miljard per dag på något som inte är mätbart samtidigt som en höjning av tredje världens levnadsstandard och bildningsgrad är nödvändigt för att stoppa en ohejdad folkökning.

Videon är väl värd att titta på (12 minuter på Engelska).

Att mäta plattors rörelser på fiol

17/09/2019

Det här är en inledning till något som torde bli en serie artiklar.

Jag har i olika sammanhang funderat över hur man enkelt kunde mäta amplituden hos vibrationer i plattorna på en fiol så att fiolen hela tiden är spelbar. Jag är alltså inte i första hand intresserad av att mäta vibrationerna i ett fritt svängande lock eller bottenplatta som inte har limmats till sargerna. Naturligtvis kan samma mätteknik användas också för detta men jag är mera intresserad av ett spelbart instrument.

Jag har tidigare tittat på möjligheterna att använda en lysdiod och en ljusdetektor (en ljuskänslig diod i revers bias). Tanken var att mäta variationerna i ljusstyrka då plattan till följd av vibrationerna rör sig i förhållande till detektorn. Jag fick aldrig mätaren att fungera pålitligt varför jag gick vidare till andra problem …

För en tid sedan råkade jag hitta en intressant video på youtube som behandlar precis mitt problem och där mätningen sker på nästan identiskt sätt jämfört med mitt tänkta system ovan. Skillnaden är att man i stället för en LED (lysdiod) använder en kombinerad laserdiod och ljusdetektor i samma förpackning. En laser producerar koherent ljus d.v.s. alla ljusvågor från lasern är i fas vilket gör att ljuset som reflekteras från ytan också kommer att vara (ungefär) i fas. Ungefär i fas eftersom ytan vi belyser är ojämn i mikrometerskala. Eftersom det reflekterade ljuset är någorlunda fasrelaterat till laserljuset så kommer vi att se interferens mellan laserljuset och det reflekterade ljuset. Då laserljuset ligger i samma fas som det reflekterade ljuset får vi ett signalmaximum. Då laserljuset ligger i motfas får vi ett minimum där ljuset delvis släcks ut.

Titta på videon så att du förstår vad som händer … det är fråga om en relativt enkel process.

Vilka delkomponenter behöver jag för en mätare av plattors rörelser

Jag behöver:

  • En laserdetektor i stort sett byggd som på videon. I praktiken använder jag 3-d skrivare till att bygga en hållare för lasern och hjälpelektroniken. Eventuellt använder jag någon tunn tejp som laserreflektor. En liten tunn tejpbit bör inte ändra svängningsförhållandena märkbart.
  • En separat mikrofon för att mäta ljudnivån så att olika instrument kan jämföras. Eventuellt kan lasersignalens lågfrekventa signal användas också som mikrofon men experiment får utvisa om detta fungerar.
  • En apparat för att generera en specifik ton i instrumentet. Jag har som första approximation tänk mig en enkel apparat för att knäppa på strängen med reproducerbar amplitud. Jag tänker mig ett mekaniskt finger som är fjäderbelastat  så att strängen släpps att vibrera vid en känd kraft (Usom bestäms av fjäderns töjning). Ögonblicket då fingret släpper från strängen detekteras med en mikrobrytare som då startar datainsamlingen.

Hur görs mätningen

Då plattan svänger ger laserns ljusdetektor ut en växelspänning där antalet toppar mellan svängningspunkterna ger antalet våglängder som plattan rör sig. Eftersom jag knäpper på strängen så kommer amplituden att först vara stor d.v.s. vi får ett stort antal våglängdstoppar/dalar under plattans rörelse. Rätt snabbt kommer svängningsamplituden att avklinga mot noll.

Om vi vet, mätt med mikrofon, vilken strängens grundfrekvens d.v.s. tiden för en svängningsperiod på strängen är så kan vi beräkna plattans svängningsamplitud på följande sätt.

Antag att plattans svängningsamplitud är 0,1 mm d.v.s. rörelsen 0,2 mm (200 um) och svängningsfrekvensen är 200 Hz (lös G-sträng på en fiol). En svängningsperiod är då 5 ms. Laserns våglängd är 0,65 um  (mikrometer, rött ljus) vilket betyder att vi bör få 200/0,65 = 307 signaltoppar/dalar från lasern. Då svängningen i plattan klingar av minskar amplituden och antalet toppar/dalar från lasern minskar successivt mot noll. Om vi lyssnar på lasersignalen så kommer vi att höra ett frekvenssvep från maximifrekvensen

fmax = 307/0.005 = 61,5 kHz

Om vi tar den mätta lasersignalen och beräknar Fourier-spektret på signalen så bör vi utan problem kunna se vilken maximifrekvensen är. Maximifrekvensen ger ett direkt mått på svängningsamplituden om vi känner grundtonen:

s = f_max*lamda*T

där

f_max = maximifrekvensen i lasersignalens fourier spektrum.

lamda = laserns våglängd 0,65 um

T = 1/f_grundton

Exempel (numeriska värden tagna ovan):

s = 61500 Hz * 0,65 um * 0,005 s = 200 um

Svängningsrörelsen är 200 um från minimum till maximum.

Jag väntar på laserdioder av typen ADL65052TL. Det enda kriteriet jag hade gällande val av laserdiod var att det skall finnas en ljusdiod i samma kapsel. Notera att många laserdioder som säljs nuförtiden saknar ljusdetektorn och således inte lämpar sig för ovanstående applikation.

Mätsystemet

Ovanstående övningsexempel ger data för hur mätsystemet måste konstrueras. Om vi vill täcka hela instrumentet från låga G upp till A på E-strängen så kommer den svängande strängens grundfrekvens att ligga mellan 200 Hz och ca. 1000 Hz.

Exemplet ovan visade att vi om vi tänker oss en amplitud på +/- 0,1 mm får ut en signal på 61,5 kHz från den lösa G-strängen. Om vi vill mäta G på E-strängen så ligger strängens frekvens på 800 Hz vilket med samma amplitudantagande ger en lasersensorfrekvens på 4*61,5 kHz = 246 kHz och ur samplingskriteriet ser vi att lasersignalen bör mätas minst med frekvensen 2*246 kHz = 492 kHz. För att vara på den säkra sidan bör vi sampla signalen i kanske 800 kHz under den tid då vi ligger nära maximal svängningsamplitud. Om vi antar att vi mäter 1/50 sekund så kommer vi att lagra 16000 mätvärden a’ 2 bytes d.v.s. vi behöver lagringsutrymme för 32000 mätvärden.

Ovanstående betyder att vi kan göra ett grovt val av hårdvara för vår mätare. Jag gissar att en Arduino Due som använder en ARM processor och kör på 84 MHz bör vara kapabel att sampla tillräckligt snabbt. Enligt specifikationerna bör processorn vara kapabel att sampla upp till 1 MHz. Processorn har 96 kbyte snabbt RAM minne vilket bör räcka till för buffert och analys. En Arduino Due kostar mellan 10 och 50 Euro beroende på varifrån man köper den … och om det är fråga om en orginal Due eller en kinesisk kopia. Mätsignalen måste förstärkas så att vi ligger vettigt i förhållande till AD-konverterns arbetsområde och upplösning 10 eller 12 bitar beroende av hur processorn konfigureras.

Kommande artiklar:

  • Laserdetektorns konstruktion och eventuella problem i samband med bygge.
  • Detektorns elektronik och datainsamling.
  • Knäppmekaniken
  • mätresultat.

 

 

Fioljustering, kinesisk Guarnierikopia

29/03/2019

Då man justerar en fiol så att den skall bli spelbar är det viktigt att kontrollera ljudpinnens plats. Ljudpinnen har inte utan skäl kallats fiolens själ eftersom extremt små förflyttningar av ljudpinnen kan ge stora förändringar i instrumentets klang.

Jag deltog i Folklandiakryssningen 2018 till Tallin/Reval som representant för finlands fiolbyggare (Suomen viulunrakentajat r.y.). Själv demonstrerade jag inre justering av en kinesisk kopia på en Guarneri ”Cannon”.

Jag ropade in ”offret” på eBay för $111 + $56 för transport och jag fick ett i princip välbyggt instrument men med extremt nasal klang. Den enda modifikation jag gjorde före resan var att jag bytte de kinesiska metallsträngarna till billiga syntetsträngar av typen Pirastro  Tonica. Pirastrosträngarna är inga stora  höjdare men de fungerar och de är billiga vilket är viktig om man justerar många instrument och kör med principen att strängarna på okända instrument byts innan man börjar justera. Tanken är att jag vill höra instrumentets fel och inte strängarnas.

IMGP0483 Fig. 1  Kinesisk violin inköpt för demonstration av inre slipning av en spelbar fiol. Notera hur man har fått fiolen att se gammal ut genom att ge sig på den med t.ex. cykelkätting varefter man gnider in dem med smuts. Det ser rätt övertygande ut men man borde antagligen ha gett sig på f-hålen också 😉 . Personligen tycker jag att ett nytt instrument direkt från ugnen nog kan få se nytt ut … tids nog kommer skadorna.

Steg #1

Mätning av instrumentets respons helt generellt. Jag brukar spela en havtonsskala från G-strängen uppåt till ungefär H på E-strängen och därefter köra bl.a. ett spektrum samt eventuellt en mätning av Dünnvaldparametrarna. Mätning visade att basresponsen var mycket dålig vilket man kunde höra direkt så att G och D-strängarna lät ”sträva och torra”. Strävheten och torrheten är en följd av att G-strängens grundtoner nästan inte existerar. Örat hör alltså övertonerna men inte den grundton jag tror mig höra eftersom den inte existerar och min hjärna genererar själv, inne i huvudet, den grundton som borde finnas för att övertonsserien skall bli rätt. Korrektionen är aldrig fullständig resultatet är att vi uppfattar tonen som torr.

Jag brukar alltid starta med att justera basen, så även i detta fall. Basen är svag för att locket  är alltför tjockt på kritiska punkter. Den mest kritiska punkten är kanalen mellan halsklossen och ändan av basbjälken. Kanalen lämnas oftast alltför tjock i billiga fioler och resultatet blir en tunn sträv och torr bas. Situationen brukar gå att åtgärda med några tiotal slipdrag, man bör vara försiktig med slipande här för att inte göra basen alltför mörk. På den här fiolen blev jag tvungen att slipa baskanalen många hundra drag vilket betyder att tjockleken minskade med några hundradels millimeter och det betyder samtidigt att det slipade området var extremt tjockt vilket förklarar varför tonen var torr och sträv.

Följande skede är att kontrollera att bottenplattan klingar. Vi kan akustiskt lyssna oss till  var justeringar behöver göras. Då bottenplattan klingar som den skall är knacktonen relativt jämn över hela bottenplattan. Bottenplattan skall klinga som ett välstämt trumskinn.  I föreliggande fall var knacktonen betydligt högre mitt på bottenplattan än vid ändarna BH och LB. Notera att det ofta är lättare att höra om ett område är högt eller lågt genom att stegvis knacka sig från ett område till ett annat. Det är lättare att höra en förändring i en knackton än tonens absoluta tonhöjd. Orsaken till detta är att en knackton i huvudsak är brus …

baksida.JPG

Slipning uppe tvärs över bottenplattan BH strax nedanom halsklossen höjde knacktonen (i princip samma fel som i locket), i detta fall kan inte plattan svänga korrekt i längdled.  Det gäller att justera i små steg och provspela mellan justeringarna. Om man slipar för mycket på detta område kommer man så småningom att skapa en vargton vid Bb … B något man vill undvika. Samma justering, det krävdes mycket slipande, gjordes tvärs över plattan vid bottenklossen. Små finjusteringar gjordes vid kanterna men det gäller att vara försiktig eftersom justeringarna som behövs normalt är små. Det går inte att backa om man slipar för mycket.

Då bottenplattan klingar går vi tillbaka till locket. Fiolen provspelas och jag lyssnar noggrannt på klangen i strängarna (G,D,A och E) och också på den relativa ljudstyrkan i de olika strängarna. Om t.ex. D-strängen är svagare och ”tråkigare” än de övriga strängarna kan detta korrigeras genom att slipa området för maximal svängning i locket då D-strängen spelas. Detta område ligger strax nedanför bassidans f-hål.

IMGP0483_GDAE_omr

Strängarnas områden för maximal vibration. D-området klingade klart lägre än de övriga områdena. Slipning av D-området förstärkte D-strängen och höjde D-områdets knackton. Motsvarande justeringar gjordes därefter stegvis på de övriga områdena. Målet var att få tonen jämn på alla strängar och dessutom hitta en trevlig klang med lämplig karaktär.

Om klangen blir för ”snäll/rund/menlös” främst på G- och D-strängarna så kan detta åtgärdas genom försiktig slipning av en triangel med basen upp mot A-området. Triangelns spets ligger vid kanalen mellan basbjälkens nedre ända och den nedre ändklossen d.v.s. området motsvarar området uppe mellan halskloss och basbjälke. Alltför mycket slipande här gör klangen frän och rå, spela och lyssna!

Att lägga till brillians och övertoner

Då locket och bottenplattan fungerar som de skall och tonen i övrigt är jämn över alla strängar så gäller det att få instrumentets diskant att fungera korrekt. Diskanten genereras i huvudsak via små svängande områden kring båda f-hålen.

Om jag vill justera klangen i G-strängen så att den får mera luft, brillians och karaktär men behåller sin mustighet så gör jag detta genom att koppla G-strängens maximat svängande område till f-hålets kant. Då man betraktar situationen ser man att det går obrutna träfibrer från G-området mot f-hålets ytterkant.  Kontakten till f-hålets inre kant är blockerad av f-hålets övre böj. Jag knackar från det maximalt svängande området i små steg ner mot f-hålets yttre ”vinge”. För maximal energiöverföring vill jag mekaniskt impedansanpassa hela passagen från g-området ut till vingen. Om något område på vägen mot vingen ger en låg knackton i förhållande till andra delar av vägen G-område … vinge så slipar jag extremt försiktigt det låga området.

Eftersom den svängande vingen är väldigt liten så reagerar den mycket kraftigt då vi ”stämmer den” jämför med stämning av tungan i ett dragspel där en försiktig skrapning är direkt hörbar. Utgångspunkten är max tio slipdrag varefter man lyssnar innan man eventuellt går vidare.

Justering av D-strängen görs på motsvarande sätt så att man kopplar D-området till den inre kanten av f-hålet. Systemet är detsamma här knacka stegvis från D-området upp mot den inre vingen. Slipa mycket lätt de områden på vägen som har alltför låg knackton.

A- och E-strängarnas f-hålsvingar justeras på motsvarande sätt. Effekten är tydligt hörbar då vingarna börjar fungera korrekt.

Vad gör jag om f-hålsvingen (någon av vingarna) klingar alltför högt (för hög knackton)? Lösningen är då att höja knacktonen stegvis i motsvarande maximat svängande område t.ex. A-området så att detta område stiger till samma ton som vingens knackton. Höjer jag t.ex. A-området så kommer detta att återverka på G-, D-, E-områdena som också måste justeras på nytt. Resultatet är mycket svett och arbete … detta är orsaken till att jag inte rör f-hålens vingar innan jag i övrigt är nöjd med fiolens klang.

IMGP0483_f_trim.JPG

Bilden visar hur man kan knacka längs vägen från G-området mot den yttre vingen och på motsvarande sätt från D-området till den inre vingen för att höra ojämnheter i knacktonen. Det är lättare att uppfatta förändringar i knackton än absolut pitch.

Simo Vuoristo som testar fiolen nedan konstaterar att fiolen har fått betydligt mera klarhet/brillians jämfört med föregående testspelning. Skillnaden ligger i stämningen av f-hålen och sannolikt en vattenglasbehandling av G- och D-områdena i locket på insidan. Vattenglasbehandlingen gjordes med hjälp av en tygbit limmad på en supermagnet. På tygbiten appliceras en droppe utspädd vattenglas (50% utspädning). Den yttre arbetsmagneten vänds så att tyget inte ligger mot lockets insida. Jag kan då föra vattenglas till önskad plats med hjälp av den yttre magneten varefter jag svänger den yttre magneten upp och ned vilket svänger den inre magneten mot träytan varefter jag kan stryka vattenglas på det önskade området.

Nedan ges ett eget exempel på samma fiol. Fiolen är i mitt exempel inte speciellt långt trimmad jämfört med Simo Vuoristos exempel. Man hör nog också att Simo Vuoristo är proffs och jag ren amatör 😉 .

Sången/visan är skriven av min morfar Ole Eklund och tonsatt av Lasse Mårtensson. Jag spelade in melodin som separata track d.v.s. alla stämmor är mina egna.

Den medeltida värmeperioden

06/03/2019

Hur man försökte eliminera den medeltida värmeperiodsen

Det har bland geologer och historiker funnits någon typ av koncensus att det kring vår tideräknings början var varmt. Man levde i en högkultur eftersom jordbruket producerade väl och det fanns resurser till att göra annat än att överleva.

På 200-talet eKr sjönk temperaturen kraftigt vilket ledde till folkvandringar som kom att kraftigt skada Romarriket.

På 800-talet blev det varmare och vi hade i Europa en ny värmeperiod som sträckte sig fram till 1300-talet men den bästa värmeperioden tog slut vid början av 1100-talet. Medeltidens värmeperiod utmärktes av byggandet av ståtliga katedraler … sannolikt igen för att det fanns ett överskott av människor som inte behövdes för produktion av livets nödtorft.

Medeltida_värmeperioden.png

Bild 1. Den medeltida värmeperioden och det Romerska klimatoptimet. Bilden är tagen ur Ljungqvist (2010): A NEW RECONSTRUCTION OF TEMPERATURE VARIABILITY IN THE EXTRA-TROPICAL NORTHERN HEMISPHERE DURING THE LAST TWO MILLENNIA

Bilden stämmer överens med uppfattningen från några årtionden sedan men den har ett stort problem. Bilden visar hur temperaturen under romartiden och under medeltiden sannolikt var lika hög som idag för att efter år 1300 kraftigt börja sjunka mot den lilla istiden under 1600-talet och början av 1700-talet. Problemet är helt enkelt att man har svårt att använda dagens temperatur för att skrämma människor av politiska orsaker om man kan visa att det har varit lika varmt tidigare … utan att jorden gick under.  Åtminstone kan man väl anta att någon undergång aldrig kom eftersom vi finns här idag (/sark).

År 1990 gav Romklubben, de västerländska oligarkernas sammanslutning ut rapporten:

Den första Globala Revolutionen: ”Då vi sökte efter en gemensam fiende mot vilken vi kunde enas kom vi fram till att nedsmutsning, hotet om global uppvärmning, vattenbrist, farsoter och liknande kunde passa in på detta. I sin helhet och i växelverkan mellan dessa fenomen utgör de ett gemensamt hot som alla tillsammans måste konfronteras med. Om vi pekar ut dessa faror som en fiende, faller vi i fällan, som vi redan har varnat våra läsare för nämligen att se på symptomen som orsaker. Alla dessa faror är en följd av mänsklig inverkan på naturliga processer och det är endast genom förändrade attityder och beteende som de kan övervinnas. Den verkliga fienden är mänskligheten själv.”

Samma frågor hade långt tidigare diskuterats inom Romklubben (gör en Google sökning).

Om vi vill skrämma människor till att ge ifrån sig sin lokala makt att ta egna beslut så måste man kunna visa på att vår tid är extrem och att om utvecklingen fortsätter så kommer vi att uppleva en katastrof. Vi har många gånger sedan 1990 fått höra hur vi har endast 10, 12, 15 år på oss att reagera innan mänskligheten riskerar att utrotas. Profetiorna om domedagen har kommit och gått utan synliga katastrofer men detta korrigeras genom att man kommer fram med en ännu värre profetia …

Ett sätt att fixa beställningsarbetet med att eliminera den medeltida värmeperioden som var ackepterad och välkänd, d.v.s. tiden då vikingarna koloniserade grönland, föll på klimatforskaren Michael Mann. Mann använde s.k. proxyn d.v.s. han uppskattade bl.a. via årsringar från träd vilken temperaturen var det år då årsringen bildades. Tanken är att om man väljer träd som växer nära trädgränsen så kommer trädets växthastighet främst att begränsas av temperaturen. Under varma år växer trädet bättre och årsringen blir bredare och under dåliga år blir årsringen smalare.

Hockey_stick_IPCC.png

Michael Manns hockeyklubba eliminerade hela den medeltida värmeperioden (jämför med Ljungqvists kurva) och visade på en extrem uppvärmning från början av 1900-talet. Det stora problemet med kurvan är att den lyftes fram som en ikon för en katastrofal uppvärmning samtidigt som den stod i fullständig konflikt med många ärtionden av historisk och geologisk forskning.

Det visade sig emellertid att det också fanns andra problem. Manns rekonstruktion använde sig av en då relativt ny statistisk metod PCA som inte tillämpades helt korrekt. Resultatet var att metoden visade sig kunna plocka ut hockeyklubbor ur brus d.v.s. om man matade algoritmen med brus så skapade den en hockeyklubba.

Ett annat problem som bl.a. statistikerna McIntyre och McKitrick påvisade var att Manns hockeyklubba var beroende av ett enda träd för att man skulle få fram klubban. Detta förnekades naturligtvis på det kraftigaste av Mann och gruppen runt honom.  Historien har dock nu hunnit ifatt Mann efter att gruppens epostmeddelanden nu har gjorts offentliga efter ca. 8 års förhalanden. I ett epostmeddelande från Malcolm Huges (en i gruppen) till Mann kan vi läsa:

From: Malcolm Hughes
To: Michael E. Mann
Cc: rbradley@geo.umass.edu
Subject: Re: close call
Date: Monday, July 31, 2000 3:00:26 PM
Dear Mike – I have read and re-read the draft, and have come to the
conclusion that it would be a mistake to publish it. I would also urge
you not to publish it. I think my enthusiasm aroused by the first
version of the figure allowed me to ignore the most important
problem. In the 1999 GRL paper the dangers of using too few
proxies for a hemispheric reconstruction were rehearsed – that was
our intention. That this new version of your post-1980 calculations
should be so sensitive to the omission of a single record is very
worrying indeed.

Den sista meningen ovan: ”Att denna nya version av dina beräkningar efter 1980 är så känsliga för bortlämnandet av en mätning (ett träd – min kommentar) är mycket oroande.”

Vi ser alltså att gruppen trots förnekanden var mycket väl medvetna om att hela rekonstruktionen byggde på ett enda träd som råkade ge korrekt resultat.

… epostmeddelandet avslutas med:

Då jag tänker närmare på saken skulle det vara klokare att hålla vårt krut torrt och om någon ifrågasätter detta i ett trovärdigt forum poängtera att vi jobbar med att sätta ihop ett tätt högkvalitativt datasett som ligger närmare dagens situation.

Jag läser detta som ett direkt bevis på att man körsbärsplockar data så att de skall ge det resultat man vill ha. Detta påstående om körsbärsplockning går också att direkt veriefiera genom de nyligen frisläppta epostmeddelandena:

Michael Mann:

Well, one thing that is different here is that we are  actually screening all proxies to see if they have a verifiable signal (temperature or precip) against the instrumental record. So we are using an objective measure, rather than just deciding what we think is good or not.

Alltså, en sak som skiljer här är att vi väljer bland alla proxys för att se om det finns en verifierbar signal (temperatur eller nederbörd) jämfört med mätningar. Vi använder alltså en objektiv metod i stället för att helt enkelt välja vad som är bra eller inte.

Det här är hårresande! Man säger alltså att man går igenom årsringsserier och väljer ut de serier som stämmer överens med mätningar som kriterium för att använda serierna.  Det är självklart att det hela datasettet efter denna filtrering kommer att visa precis det urvalsfiltret valde ut. Josh har illustrerat saken på kornet nedan …

Nedan ser vi vetenskaplig heder (/sark) i arbete. Vid arbetet på IPCC:s rapporter fanns det klara direktiv på hur publikationer kunde tas med. Publikationen skall ha genomgått peer review etc.  före ett givet deadline för att kunna användas i IPCC:s rapport. Saken gäller naturligtvis inte den inre kretsen/teamet. Den egna artikeln, som försökte försvara hockeyklubban mot McIntyres och McKitricks kritik, var försenad. Vad borde man då göra?

From: Phil Jones [mailto:p.jones@uea.ac.uk]
Sent: Wednesday, September 12, 2007 11:30 AM
To: Wahl, Eugene R; Caspar Ammann
Subject: Wahl/Ammann

Gene/Caspar,
Good to see these two out. Wahl/Ammann doesn’t appear to be in CC’s online first, but comes up if you search.
You likely know that McIntyre will check this one to make sure it hasn’t changed since the IPCC close-off date July 2006!
Hard copies of the WG1 report from CUP have arrived here today.

Ammann/Wahl – try and change the Received date! Don’t give those skeptics something
to amuse themselves with.

Cheers<
Phil

Phil Jones en av teamets huvudfigurer föreslår:

Amman/Wahl – försök att ändra ankomstdatumet! Ge inte de där skeptikerna någon orsak att ha roligt.

Kanske nog för denna gång!


Pointman's

A lagrange point in life

THE HOCKEY SCHTICK

Lars Silén: Reflex och Spegling

NoTricksZone

Lars Silén: Reflex och Spegling

Big Picture News, Informed Analysis

Canadian journalist Donna Laframboise. Former National Post & Toronto Star columnist, past vice president of the Canadian Civil Liberties Association.

JoNova

Lars Silén: Reflex och Spegling

Climate Audit

by Steve McIntyre

Musings from the Chiefio

Techno bits and mind pleasers

Bishop Hill

Lars Silén: Reflex och Spegling

Watts Up With That?

The world's most viewed site on global warming and climate change

TED Blog

The TED Blog shares news about TED Talks and TED Conferences.

Larsil2009's Blog

Lars Silén: Reflex och Spegling

%d bloggare gillar detta: