Archive for the ‘Musik, instrumentbygge’ Category

Att mäta plattors rörelser på fiol

17/09/2019

Det här är en inledning till något som torde bli en serie artiklar.

Jag har i olika sammanhang funderat över hur man enkelt kunde mäta amplituden hos vibrationer i plattorna på en fiol så att fiolen hela tiden är spelbar. Jag är alltså inte i första hand intresserad av att mäta vibrationerna i ett fritt svängande lock eller bottenplatta som inte har limmats till sargerna. Naturligtvis kan samma mätteknik användas också för detta men jag är mera intresserad av ett spelbart instrument.

Jag har tidigare tittat på möjligheterna att använda en lysdiod och en ljusdetektor (en ljuskänslig diod i revers bias). Tanken var att mäta variationerna i ljusstyrka då plattan till följd av vibrationerna rör sig i förhållande till detektorn. Jag fick aldrig mätaren att fungera pålitligt varför jag gick vidare till andra problem …

För en tid sedan råkade jag hitta en intressant video på youtube som behandlar precis mitt problem och där mätningen sker på nästan identiskt sätt jämfört med mitt tänkta system ovan. Skillnaden är att man i stället för en LED (lysdiod) använder en kombinerad laserdiod och ljusdetektor i samma förpackning. En laser producerar koherent ljus d.v.s. alla ljusvågor från lasern är i fas vilket gör att ljuset som reflekteras från ytan också kommer att vara (ungefär) i fas. Ungefär i fas eftersom ytan vi belyser är ojämn i mikrometerskala. Eftersom det reflekterade ljuset är någorlunda fasrelaterat till laserljuset så kommer vi att se interferens mellan laserljuset och det reflekterade ljuset. Då laserljuset ligger i samma fas som det reflekterade ljuset får vi ett signalmaximum. Då laserljuset ligger i motfas får vi ett minimum där ljuset delvis släcks ut.

Titta på videon så att du förstår vad som händer … det är fråga om en relativt enkel process.

Vilka delkomponenter behöver jag för en mätare av plattors rörelser

Jag behöver:

  • En laserdetektor i stort sett byggd som på videon. I praktiken använder jag 3-d skrivare till att bygga en hållare för lasern och hjälpelektroniken. Eventuellt använder jag någon tunn tejp som laserreflektor. En liten tunn tejpbit bör inte ändra svängningsförhållandena märkbart.
  • En separat mikrofon för att mäta ljudnivån så att olika instrument kan jämföras. Eventuellt kan lasersignalens lågfrekventa signal användas också som mikrofon men experiment får utvisa om detta fungerar.
  • En apparat för att generera en specifik ton i instrumentet. Jag har som första approximation tänk mig en enkel apparat för att knäppa på strängen med reproducerbar amplitud. Jag tänker mig ett mekaniskt finger som är fjäderbelastat  så att strängen släpps att vibrera vid en känd kraft (Usom bestäms av fjäderns töjning). Ögonblicket då fingret släpper från strängen detekteras med en mikrobrytare som då startar datainsamlingen.

Hur görs mätningen

Då plattan svänger ger laserns ljusdetektor ut en växelspänning där antalet toppar mellan svängningspunkterna ger antalet våglängder som plattan rör sig. Eftersom jag knäpper på strängen så kommer amplituden att först vara stor d.v.s. vi får ett stort antal våglängdstoppar/dalar under plattans rörelse. Rätt snabbt kommer svängningsamplituden att avklinga mot noll.

Om vi vet, mätt med mikrofon, vilken strängens grundfrekvens d.v.s. tiden för en svängningsperiod på strängen är så kan vi beräkna plattans svängningsamplitud på följande sätt.

Antag att plattans svängningsamplitud är 0,1 mm d.v.s. rörelsen 0,2 mm (200 um) och svängningsfrekvensen är 200 Hz (lös G-sträng på en fiol). En svängningsperiod är då 5 ms. Laserns våglängd är 0,65 um  (mikrometer, rött ljus) vilket betyder att vi bör få 200/0,65 = 307 signaltoppar/dalar från lasern. Då svängningen i plattan klingar av minskar amplituden och antalet toppar/dalar från lasern minskar successivt mot noll. Om vi lyssnar på lasersignalen så kommer vi att höra ett frekvenssvep från maximifrekvensen

fmax = 307/0.005 = 61,5 kHz

Om vi tar den mätta lasersignalen och beräknar Fourier-spektret på signalen så bör vi utan problem kunna se vilken maximifrekvensen är. Maximifrekvensen ger ett direkt mått på svängningsamplituden om vi känner grundtonen:

s = f_max*lamda*T

där

f_max = maximifrekvensen i lasersignalens fourier spektrum.

lamda = laserns våglängd 0,65 um

T = 1/f_grundton

Exempel (numeriska värden tagna ovan):

s = 61500 Hz * 0,65 um * 0,005 s = 200 um

Svängningsrörelsen är 200 um från minimum till maximum.

Jag väntar på laserdioder av typen ADL65052TL. Det enda kriteriet jag hade gällande val av laserdiod var att det skall finnas en ljusdiod i samma kapsel. Notera att många laserdioder som säljs nuförtiden saknar ljusdetektorn och således inte lämpar sig för ovanstående applikation.

Mätsystemet

Ovanstående övningsexempel ger data för hur mätsystemet måste konstrueras. Om vi vill täcka hela instrumentet från låga G upp till A på E-strängen så kommer den svängande strängens grundfrekvens att ligga mellan 200 Hz och ca. 1000 Hz.

Exemplet ovan visade att vi om vi tänker oss en amplitud på +/- 0,1 mm får ut en signal på 61,5 kHz från den lösa G-strängen. Om vi vill mäta G på E-strängen så ligger strängens frekvens på 800 Hz vilket med samma amplitudantagande ger en lasersensorfrekvens på 4*61,5 kHz = 246 kHz och ur samplingskriteriet ser vi att lasersignalen bör mätas minst med frekvensen 2*246 kHz = 492 kHz. För att vara på den säkra sidan bör vi sampla signalen i kanske 800 kHz under den tid då vi ligger nära maximal svängningsamplitud. Om vi antar att vi mäter 1/50 sekund så kommer vi att lagra 16000 mätvärden a’ 2 bytes d.v.s. vi behöver lagringsutrymme för 32000 mätvärden.

Ovanstående betyder att vi kan göra ett grovt val av hårdvara för vår mätare. Jag gissar att en Arduino Due som använder en ARM processor och kör på 84 MHz bör vara kapabel att sampla tillräckligt snabbt. Enligt specifikationerna bör processorn vara kapabel att sampla upp till 1 MHz. Processorn har 96 kbyte snabbt RAM minne vilket bör räcka till för buffert och analys. En Arduino Due kostar mellan 10 och 50 Euro beroende på varifrån man köper den … och om det är fråga om en orginal Due eller en kinesisk kopia. Mätsignalen måste förstärkas så att vi ligger vettigt i förhållande till AD-konverterns arbetsområde och upplösning 10 eller 12 bitar beroende av hur processorn konfigureras.

Kommande artiklar:

  • Laserdetektorns konstruktion och eventuella problem i samband med bygge.
  • Detektorns elektronik och datainsamling.
  • Knäppmekaniken
  • mätresultat.

 

 

Inre slipning av nyckelharpa

05/06/2019

Jag visade i artiken Nyckelharpa i barnstorlek justering hur harpan som rå och ojusterad hade stora problem att tända på G-strängen och tonen var rent generellt sträv och luddig.

Efter den första artikeln kortade jag av ljudpinnen en aning så att jag kunde flytta den närmare den rekommenderade platsen (ljudpinnen låg för långt in mot mitten av harpan).

Flyttning av ljudpinnen gav inte någon märkbar förbättring av ljudkvaliteten och alla de tidigare felen fanns kvar.

Ljustering via inre slipning

En nyckelharpa har ett jämntjockt lock d.v.s. en plan skiva av gran som är basad över en i princip cylindrisk form. Då vi betraktar en fiol (som är en avlägsen släkting rent tekniskt) så ser vi att fiolens lock inte är jämntjockt utan tjockleken varierar rätt mycket över lockets yta. På en fiol så beror en torr bas som inte tänder/fungerar ofta på att locket är för styvt i längdriktninge. Locket på en nyckelharpa är uppstyvat i längdriktningen med hjälp av den såkallade basbjälken och de enda justeringar som är möjliga är att antingen göra locket tunnare för att få mera rörelse, gung i längdriktningen, eller korta av basbjälken eller göra den lägre eller tunnare. Problemet är att vid konventionellt bygge så kan inte locket göras tunnare efter att det basats och lackats. Modifikation av basbjälken kräver att antingen lock eller botten tas loss för att man skall kunna göra modifikation.

Min egen teknik för justering är att instrumentet hela tiden är spelbart och jag gör justeringar från insidan med hjälp av en magnet på vilken jag limmat slipmaterial (tänk magnetiskt sandpapper). Slipmagneten kan flyttas d.v.s. slipa med hjälp av en annan supermagnet på utsidan. Metoden fungerar alldeles otroligt väl även om det ibland kan bli rätt god motion genom mycket slipande. Metoden är dock så effektiv att jag av misstag har slipat hål på ett fiollock …

Grundjustering av basen

Basen är sträv och torr och man får tvinga tonerna att tända vilket ger ett raspigt otrevligt ljud. Vi kan fixa detta genom att göra rörelsen i lockets längdled mjukare och större. Vi gör detta genom att slipa området mellan basbjälken och halsen tunnare vilket gör att tonen i G-strängen mörknar och blir mera distinkt. Det som händer är att grundtonerna på denna sträng förstärks vilket tar bort torrheten/strävheten.

Gamla tyska fioler med mycket mörk ton tenderade att ha motsvarande område mycket tunt … resultatet blev att byggare varnade varandra för att göra området tunt vilket ledde till att den mörka tonen försvann men man fick en ljus men torr ton i stället vilket inte nödvändigtvis är någon större förbättring.

Barnharpan krävde kanske 200 drag fram/tillbaka för att basen skulle börja fungera. Då basen tas fram blir tonen mörkare men den blir inte brilliant och intressant. Vi har flera alternativ för att fixa detta.  Notera hur ett vanligt skrivarpapper används för att skydda lackytan mot arbetsmagneten. Förr eller senare så kommer arbetsbagneten att få ytskador som skråmar lacket om inte ett skyddspapper används vid slipningen.

Då vi slipat fram grundtonerna på G-strängen gäller det att också få dit fylliga övertoner och resonans i harpan. Detta kan vi göra genom att slipa de områden där de olika spelsträngarna ger de största mekaniska rörelserna.  Det visar sig att C-strängen reagerar på området mellan basens f-håls  övre ända och halskanalen. Vi slipar ett elliptiskt område så att vi lämnar kanske 1-2cm ovanför f-hålet till kanske 2,5 cm nedanför halskanalen. Det här området förbättrar bordunsträngen låga C men påverkar också positivt G-strängen.

Notera att det nog behövs betydligt mera slipande än i exempelvideosnutten. Slipningen görs lämpligen så att man räknar till t.ex. 50 ”varv” och därefter provspelar. Effekten tenderar att vara kraftig genast efter slipningen varefter resultatet delvis backar tillbaka mot utgångsläget (lyckligtvis). Orsaken är sannolikt att den slipade träytan oxiderar och hårdnar efter slipningen vilket ger en hörbar effekt.

Vi kan lägga till karaktär i tonen genom att slipa aktiva områdena för de olika strängarna (C, G, D och A). Det är värt att poängtera att t.ex. slipning av D-området kommer att påverka alla strängar men effekten är tydligast för D-strängen.

Då tonen börjar vara på plats kan man försiktigt slipa den nedre basbjälkeskanalen och en triangel upp mit diskantsidans C-båge. Triangelns spets ligger i den nedre kanalen och basen är riktad ungefär mot C-bågens nedre hörn. Detta område kan delvis användas till att motverka alltför mörk ton i instrumentet. Orsaken till att effekten inte är densamma uppe och nere är att hela locket är osymmetriskt och också ljudpinnen stor osymmetriskt.

Jag kommer att fortsätta att slipa in instrumentet … det är inte ännu färdigt injusterat men det kan vara skäl att låta instrumentet vila mellan olika justeringar (en till två dagar).

Löven till G-strängen är alltför korta och jag blir tvungen att göra nya. Löven till A-strängen måste kortas av av utseendeskäl. Därefter bör harpan intoneras d.v.s. den enskilda tonerna stäms så att instrumentet är möjligast rent på alla toner.

Jag hoppas att ovanstående kan ge uppslag till hur en ospelbar väggharpa rätt enkelt kan justeras så att den blir spelbar. Kom dock ihåg: Gör alla justeringar i små steg och provspela mellan justeringar. Gör inte justeringar slumpmässigt utan koncentrera dig på ett problem i taget. Personligen brukar jag på fiol eller nyckelharpa börja med att sätta basen på plats varefter jag går vidare en sträng i taget. Kom ihåg att instrumentet skasll vara korrekt stämt (vilket mitt inte ännu är) för att resonanssträngarna skall fungera.

BÖRJA INTE JUSTERA ETT VÄLFUNGERANDE INSTRUMENT! KÖP ETT BILLIGT INSTRUMENT OCH GE DIG PÅ DET FÖRST … DÅ ÄR SKADAN INTE SÅ STOR DÅ DU KLANTAR DIG.  OM TONEN FÖRSÄNMRAS VID SLIPNING PÅ NÅGON PLATS SLIPA INTE VIDARE DÄR!

Nyckelharpa i barnstorlek justering

03/06/2019

Jag har byggt en barnharpa med mensuren 340 mm i huvudsak efter Sören Åhkers ritningar. Sören är en trevlig person som det är lätt att kommunicera med och samtidigt en av de nyckelhapsbyggare som regelbundet har fått mycket gott betyg för sina harpor. Avsikten med bygget är att undersöka om det är lättare eller svårare för en fiolspelman att spela på en mindre harpa där mensuren ligger betydligt närmare fiolens. Personligen har jag störts av att spela på en fullstorleksharpa då det gäller att spela i det högre registret d.v.s. det register där man på en fiol skulle spela på E-strängen. Klaviaturens storlek på en stor harpa leder till stora handrörelser motsvarande lägesspel på en stor altfiol.

IMGP5971.JPG

Bilden visar den nya barnharpan i relation till min fullstora harpa. Klaviaturen är ca. 50 mm kortare än klaviaturen på den stora harpan. En fullvuxen hand bör då ha betydligt bättre räckvidd på den lilla harpan är på en harpa av full storlek.

Följande skede i byggprocessen blir nu att i små steg börja justera in harpan. Min uppfattning om instrument är att ett bra instrument är ett instrument där man har lyckats eliminera så många fel som möjligt.  Jag hoppas kunna dokumentera felsökningsprocessen med ljud och bild i ett antal kommande artiklar.

Vilka fel har jag noterat i detta skede

Mina finstämmare för Cello (3/4 – 4/4 storlek) är för små. Detta gör att rörelsen i finstämmaren blir mycket liten innan strängens ändkula rör i stränghållaren. Min tanke är att jag byter till större finstämmare (storlek 4/4 cello) då de levereras efter någon vecka. Alternativet är att korta av stränghållaren en aning. Byte av finstämmare uppfattar jag vara enklare och mera rationellt i detta skede då stränghållaren redan är ytbehandlad. Det var naturligtvis en miss från min sida att inte i tid upptäcka att 3/4-cello finstämmarna egentligen är för små. Jag kan leva med detta problem en kort tid.

A-strängen fungerar i princip rätt bra men tonen är inte så brilliant som jag skulle vilja ha den. Detta justeras i ett senare skede.

D-strängen (jag stämmer C-G-D-A räknat från basen inte CGCA vilket är traditionellt) marginellt användbar men den tänder dåligt. Justeringen av G-strängen kommer också att påverka D-strängen positivt. Orsaken till att jag stämmer CGDA är att fingersättningen då är lika som på fiol vilket gör det lättare att spela både nyckelharpa och fiol.

G-strängen tänder mycket dåligt. Mycket ”murrig” och ”sträv” i tonen.

Det första steget blir att justera ljudpinnens plats för att hitta möjligast god ton utan andra justeringar. Det här steget är viktigt eftersom man vet att ljudet kan förändras kraftigt till följd av väldigt små ljudpinneförflyttningar. Jag vill inte göra oåterkalleliga justeringar på instrumentet innan ljudpinnejustering har gjorts eftersom senare förflyttningar av ljudpinnen annars kan leda till behov av ytterligare helt onödigt slipande.

Jag kommer att börja med att försöka få G-strängen att fungera korrekt och senare justera D- och A-strängarna. Det är möjligt att A-strängen fixar sig själv då man får G- och D-strängarna att fungera.

Det första steget i justeringen av G-strängen blir (om det behövs … vilket är sannolikt) att kontrollera och efterjustera kanalen mellan halsen och basbjälkens övre ända. På en fiol blir tonen väldigt torr och sträv om motsvarande område är för tjockt/styvt. Den här barnharpans nyckellåda har konstruerats så att det finns plats att slipa den kritiska övre basbjälkekanalen. Utrymmet mellan lock och nyckellåda i min fullstora harpa är för litet för att tillåta efterjustering genom inre slipning. Bara den lilla harpan fås spelbar så kan jag plocka isär den stora harpan och modifiera den så att den effektivt kan efterjusteras.

Om erfarenheterna från fioler går att applicera så kan det också vara värt att tunna ut området strax ovanför bassidans f-hål. Dessa förändringar bör tydligt förbättra G-strängens respons.

Om D-strängen efter justeringen av G-strängen blir för svag (relativt sett) så brukar man kunna förstärka tonen genom att slipa området några centimeter ner från bassidans  f-hål.

Också stallet kan justeras men min erfarenhet är att inre graduering ger betydligt starkare effekt än stallsjustering. Om andan faller på justerar jag eventuellt också stallet då harpan i övrigt börjar vara OK.

Fioltrimning … Oooops!!!

01/05/2019

Jag har i ungefär två års tid jobbat med att optimera en kinesisk fiol som jag idag kallar min Klezmerfiol d.v.s. fiolen används för spelning av klezmermusik.

Jag ropade in fiolen på e-bay för $111 + frakt d.v.s. totalpriset inklusive moms och frakt kom att ligga på ca. 200 Euro eller grovt översatt till svenska kronor 2000 sek. Fiolen köptes ursprungligen för att den skulle fungera som demonstrationsobjekt för inre justering för fiolbyggarna i finland (Suomen viulunrakentajat ry.) då vi hade en utställning gällande fiolbygge och justering i samband med Folklandia kryssningen 2018.

Jag har specialiserat mig på efterjustering av fioler genom justering av lockets och bottenplattans tjocklek något som kallas re-graduering. Efterjusteringen sker så att fiolen hela tiden är spelbar och justeringen sker genom slipning av kritiska punkter från insidan i små steg. Fiolen slipas varefter den provspelas och därefter slipas på nytt utgående från det akustiska resultat man uppnådde.

Fiolen fixades så att vi som teknisk demonstration hela tiden inför publik bytte ljudpinnen mot en ljudpinne med korrekta dimensioner och korrekt skärning. De kinesiska metallsträngarna byttes mot Pirastro Tonica som inte är speciellt bra men de är billiga jämfört med t.ex. dominant eller Eva Pirazzi. Därefter justerade vi ljudpinnens plats för bästa möjliga ljud. Resultatet var en i princip spelbar fiol d.v.s. fiolen hade inga externt synliga direkta byggfel men ljudet var nasalt och tråkigt. I likhet med de flesta billiga fioler så var basen hes och torr.

Om man tittar på fiolens spektrum så ser man att torrheten beror på att basens grundtoner på g-strängen saknas i princip helt och hållet. Den mänskliga hjärnan hör raden av harmoniska övertoner som produceras av instrumentet och hjärnan lägger själv till den saknade bastonen … men detta görs aldrig fullt ut vilket gör att att de låga tonerna inte är fylliga utan ”torra”.

Torrheten kan enkelt justeras bort genom att göra området mellan basbjälkens övre ända och halsklossen tunnare. Slipning på detta område ger en extemt kraftig effekt och man bör gå fram i små steg säg 10-15 slipdrag fram/tillbaka mellan provspelningar eftersom resultatet om man slipar för mycket kan bli en mörk ”råmande” (tänk ko) ton som inte är önskvärd. Kinesen krävde (extremt) mycket slipande här för att få tonen på plats.

Efter justeringen av basen justeras bottenplattan så att den klingar d.v.s. den får inte vara stum. De viktigaste områdena brukar vara tvärs över locket strax ovanför nederändans kloss och strax nedanför halsklossen.  Det gäller här att vara försiktig så att man inte slipar för mycket uppe vid halsen eftersom detta kan ge upphov till en vargton i trakten av A…H.

Om hur man gör Oooops!

Jah har en längre tid uppfattat att fiolen fungerar ungefär som jag vill ha den. En fiolspelande vän, yrkesviolinist,  som använder axelstöd (vilket jag normalt inte gör) kom på besök och jag lånade honom mitt axelstöd. Jag fick egentligen bara lovord över fiolen men då jag själv spelade fiolen med axelstöd så tyckte jag att fiolen lät lite torr i mina öron (axelstödet påverkar ofta fiolens ljud helt hörbart genom att axelstödet klämmer ihot fiolen från sidorna). Jag tänkte inte vidare på orsaken till problemet … det är ju lätt att åtgärda genom lite slipning.

Torrheten är ju inget problem att åtgärda så jag slipade lite till vid kanalen mellan basbjälke och halskloss vilket löste problemet. På morgonen nästa dag lät fiolen fortfarande bra men jag upptäckte att jag hade slipat ett litet hål vi halskanalen (se bild, mycket pinsamt natuligtvis 😉 ).

Den intressanta frågan uppstod då hur man fixar detta problem på ett snyggt sätt utan att skära loss locket? Min lösning blev att jag skar en liten träflisa från ett lockämne för fiol som jag råkade ha på lager. Jag formade spånan så att den är något större än hålet varefter jag limmade träflisan (svagt) på en supermagnet. Bilden är tagen innan flisan/spånan har rundats/jämnats med sandpapper. Notera att träspånan är limmad på en liten supermagnet som är något mindre än själva spånan. Den stora supermagneten som syns i bilden är en hjälpyta vid bearbetningen av träbiten.

Med hjälp av en yttre magnet kunde jag nu föra lappen till hålet .

Lappens kant kan nu ses vid hålets högra kant under de yttre hjälpmagneterna. Jag tvingade in lim från yttre sidan (flödigt) och flyttade lappen av och an så att den skulle få lim jämnt över hela ytan. Därefter flyttade jag lappen till önskat läge och lämnade kvar en magnet som limpress (den yttre limpressen kan vara precis den slipmagnet som gjorde hålet).

”Limpressen” är på plats.

Då limmet hade torkat tillräckligt tvättade jag bort överloppslimmet från utsidan. Hjälpmagneten på vilken lappen hade limmats togs bort genom att använda en lite större magnet som hammare för att slå loss hjälpmagneten från lappen, detta fungerade helt problemfritt.

Lappen är nu på plats utan ytterligare skador. Lappen är vänd så att ådringen i stort sett går vinkelrätt mot lockets ådring.

Följande steg blev nu att fixa skadan så att den är möjligast osynlig. Eftersom fiolen är åldrad på konstgjord väg beslöt jag att inte försöka återställa lackytan till ursprungligt skick … i stället ”smutsade” jag lappen med mjuk blyertspenna varefter jag drog ett lager brunt betslack över stället. Resultatet är att lappen ser ut ungefär som övriga skador på locket vilket var avsikten med övningen.

Reparationen påverkar inte ljudet på fiolen hörbart men det är självklart att det här instrumentet inte skall slipas mera. Orsaken till att jag slipade hål på locket var att ändan på basbjälken styrde slipmagneten exakt över ett väldigt begränsat område. I framtiden måste jag tänka på att inte vid slipningen ligga och stödja mot ändan av basbjälken. Slipningen skall alltså medvetet spridas ut över en större yta.

Om någon i Sverige är intresserad av att provspela instrumentet så kommer det att finnas på Ekebyholm den 23-27.6 2019 där jag kommer att vara deltagare.

Hur kan denna reparationsteknik användas

Det kan av olika skäl uppstå sprickor i ett fiollock. I vissa fall är sprickan så liten att det inte lönar sig att skära loss locket för reparation utan sprickan limmas och sprickan dras ihop med något lämpligt verktyg. Problemet är dock att en lagning av denna typ sällan blir beständig om man inte limmar ett eller flera såkallade frimärken över den limmade sprickan. Ovanstående lagning visar hur man enkelt kan limma ett frimärke över en spricka i en fiol utan att ta loss locket.

Fioljustering, kinesisk Guarnierikopia

29/03/2019

Då man justerar en fiol så att den skall bli spelbar är det viktigt att kontrollera ljudpinnens plats. Ljudpinnen har inte utan skäl kallats fiolens själ eftersom extremt små förflyttningar av ljudpinnen kan ge stora förändringar i instrumentets klang.

Jag deltog i Folklandiakryssningen 2018 till Tallin/Reval som representant för finlands fiolbyggare (Suomen viulunrakentajat r.y.). Själv demonstrerade jag inre justering av en kinesisk kopia på en Guarneri ”Cannon”.

Jag ropade in ”offret” på eBay för $111 + $56 för transport och jag fick ett i princip välbyggt instrument men med extremt nasal klang. Den enda modifikation jag gjorde före resan var att jag bytte de kinesiska metallsträngarna till billiga syntetsträngar av typen Pirastro  Tonica. Pirastrosträngarna är inga stora  höjdare men de fungerar och de är billiga vilket är viktig om man justerar många instrument och kör med principen att strängarna på okända instrument byts innan man börjar justera. Tanken är att jag vill höra instrumentets fel och inte strängarnas.

IMGP0483 Fig. 1  Kinesisk violin inköpt för demonstration av inre slipning av en spelbar fiol. Notera hur man har fått fiolen att se gammal ut genom att ge sig på den med t.ex. cykelkätting varefter man gnider in dem med smuts. Det ser rätt övertygande ut men man borde antagligen ha gett sig på f-hålen också 😉 . Personligen tycker jag att ett nytt instrument direkt från ugnen nog kan få se nytt ut … tids nog kommer skadorna.

Steg #1

Mätning av instrumentets respons helt generellt. Jag brukar spela en havtonsskala från G-strängen uppåt till ungefär H på E-strängen och därefter köra bl.a. ett spektrum samt eventuellt en mätning av Dünnvaldparametrarna. Mätning visade att basresponsen var mycket dålig vilket man kunde höra direkt så att G och D-strängarna lät ”sträva och torra”. Strävheten och torrheten är en följd av att G-strängens grundtoner nästan inte existerar. Örat hör alltså övertonerna men inte den grundton jag tror mig höra eftersom den inte existerar och min hjärna genererar själv, inne i huvudet, den grundton som borde finnas för att övertonsserien skall bli rätt. Korrektionen är aldrig fullständig resultatet är att vi uppfattar tonen som torr.

Jag brukar alltid starta med att justera basen, så även i detta fall. Basen är svag för att locket  är alltför tjockt på kritiska punkter. Den mest kritiska punkten är kanalen mellan halsklossen och ändan av basbjälken. Kanalen lämnas oftast alltför tjock i billiga fioler och resultatet blir en tunn sträv och torr bas. Situationen brukar gå att åtgärda med några tiotal slipdrag, man bör vara försiktig med slipande här för att inte göra basen alltför mörk. På den här fiolen blev jag tvungen att slipa baskanalen många hundra drag vilket betyder att tjockleken minskade med några hundradels millimeter och det betyder samtidigt att det slipade området var extremt tjockt vilket förklarar varför tonen var torr och sträv.

Följande skede är att kontrollera att bottenplattan klingar. Vi kan akustiskt lyssna oss till  var justeringar behöver göras. Då bottenplattan klingar som den skall är knacktonen relativt jämn över hela bottenplattan. Bottenplattan skall klinga som ett välstämt trumskinn.  I föreliggande fall var knacktonen betydligt högre mitt på bottenplattan än vid ändarna BH och LB. Notera att det ofta är lättare att höra om ett område är högt eller lågt genom att stegvis knacka sig från ett område till ett annat. Det är lättare att höra en förändring i en knackton än tonens absoluta tonhöjd. Orsaken till detta är att en knackton i huvudsak är brus …

baksida.JPG

Slipning uppe tvärs över bottenplattan BH strax nedanom halsklossen höjde knacktonen (i princip samma fel som i locket), i detta fall kan inte plattan svänga korrekt i längdled.  Det gäller att justera i små steg och provspela mellan justeringarna. Om man slipar för mycket på detta område kommer man så småningom att skapa en vargton vid Bb … B något man vill undvika. Samma justering, det krävdes mycket slipande, gjordes tvärs över plattan vid bottenklossen. Små finjusteringar gjordes vid kanterna men det gäller att vara försiktig eftersom justeringarna som behövs normalt är små. Det går inte att backa om man slipar för mycket.

Då bottenplattan klingar går vi tillbaka till locket. Fiolen provspelas och jag lyssnar noggrannt på klangen i strängarna (G,D,A och E) och också på den relativa ljudstyrkan i de olika strängarna. Om t.ex. D-strängen är svagare och ”tråkigare” än de övriga strängarna kan detta korrigeras genom att slipa området för maximal svängning i locket då D-strängen spelas. Detta område ligger strax nedanför bassidans f-hål.

IMGP0483_GDAE_omr

Strängarnas områden för maximal vibration. D-området klingade klart lägre än de övriga områdena. Slipning av D-området förstärkte D-strängen och höjde D-områdets knackton. Motsvarande justeringar gjordes därefter stegvis på de övriga områdena. Målet var att få tonen jämn på alla strängar och dessutom hitta en trevlig klang med lämplig karaktär.

Om klangen blir för ”snäll/rund/menlös” främst på G- och D-strängarna så kan detta åtgärdas genom försiktig slipning av en triangel med basen upp mot A-området. Triangelns spets ligger vid kanalen mellan basbjälkens nedre ända och den nedre ändklossen d.v.s. området motsvarar området uppe mellan halskloss och basbjälke. Alltför mycket slipande här gör klangen frän och rå, spela och lyssna!

Att lägga till brillians och övertoner

Då locket och bottenplattan fungerar som de skall och tonen i övrigt är jämn över alla strängar så gäller det att få instrumentets diskant att fungera korrekt. Diskanten genereras i huvudsak via små svängande områden kring båda f-hålen.

Om jag vill justera klangen i G-strängen så att den får mera luft, brillians och karaktär men behåller sin mustighet så gör jag detta genom att koppla G-strängens maximat svängande område till f-hålets kant. Då man betraktar situationen ser man att det går obrutna träfibrer från G-området mot f-hålets ytterkant.  Kontakten till f-hålets inre kant är blockerad av f-hålets övre böj. Jag knackar från det maximalt svängande området i små steg ner mot f-hålets yttre ”vinge”. För maximal energiöverföring vill jag mekaniskt impedansanpassa hela passagen från g-området ut till vingen. Om något område på vägen mot vingen ger en låg knackton i förhållande till andra delar av vägen G-område … vinge så slipar jag extremt försiktigt det låga området.

Eftersom den svängande vingen är väldigt liten så reagerar den mycket kraftigt då vi ”stämmer den” jämför med stämning av tungan i ett dragspel där en försiktig skrapning är direkt hörbar. Utgångspunkten är max tio slipdrag varefter man lyssnar innan man eventuellt går vidare.

Justering av D-strängen görs på motsvarande sätt så att man kopplar D-området till den inre kanten av f-hålet. Systemet är detsamma här knacka stegvis från D-området upp mot den inre vingen. Slipa mycket lätt de områden på vägen som har alltför låg knackton.

A- och E-strängarnas f-hålsvingar justeras på motsvarande sätt. Effekten är tydligt hörbar då vingarna börjar fungera korrekt.

Vad gör jag om f-hålsvingen (någon av vingarna) klingar alltför högt (för hög knackton)? Lösningen är då att höja knacktonen stegvis i motsvarande maximat svängande område t.ex. A-området så att detta område stiger till samma ton som vingens knackton. Höjer jag t.ex. A-området så kommer detta att återverka på G-, D-, E-områdena som också måste justeras på nytt. Resultatet är mycket svett och arbete … detta är orsaken till att jag inte rör f-hålens vingar innan jag i övrigt är nöjd med fiolens klang.

IMGP0483_f_trim.JPG

Bilden visar hur man kan knacka längs vägen från G-området mot den yttre vingen och på motsvarande sätt från D-området till den inre vingen för att höra ojämnheter i knacktonen. Det är lättare att uppfatta förändringar i knackton än absolut pitch.

Simo Vuoristo som testar fiolen nedan konstaterar att fiolen har fått betydligt mera klarhet/brillians jämfört med föregående testspelning. Skillnaden ligger i stämningen av f-hålen och sannolikt en vattenglasbehandling av G- och D-områdena i locket på insidan. Vattenglasbehandlingen gjordes med hjälp av en tygbit limmad på en supermagnet. På tygbiten appliceras en droppe utspädd vattenglas (50% utspädning). Den yttre arbetsmagneten vänds så att tyget inte ligger mot lockets insida. Jag kan då föra vattenglas till önskad plats med hjälp av den yttre magneten varefter jag svänger den yttre magneten upp och ned vilket svänger den inre magneten mot träytan varefter jag kan stryka vattenglas på det önskade området.

Nedan ges ett eget exempel på samma fiol. Fiolen är i mitt exempel inte speciellt långt trimmad jämfört med Simo Vuoristos exempel. Man hör nog också att Simo Vuoristo är proffs och jag ren amatör 😉 .

Sången/visan är skriven av min morfar Ole Eklund och tonsatt av Lasse Mårtensson. Jag spelade in melodin som separata track d.v.s. alla stämmor är mina egna.

Ljudpinneverktyg för Nyckelharpa

18/09/2018

Jag konstruerade för kanske ett år sedan ett ljudpinneverktyg för justering av fioler. Verktyget används till att mäta ljudpinnens plats i förhållande till stallet.

Som känt har ljudpinnen en viktig roll i hurudant ljud fiolen ger. Det är inte utan orsak man på olika språk säger att ljudpinnen är violinens själ! Nyckelharpan har precis som fiolen en ljudpinne som även den måste vara korrekt injusterad för att harpan skall klinga. Ljudpinneinstrumentet nedan är konstruerat för nyckelharpa d.v.s. det är något större än motsvarande instrument för violin.

Ljudpinneverktyget består av två halvor. Den nedre halvan har ett urtag som motsvarar en halv ljudpinne. Man för in den nedre halvan genom f-hålet och hakar urtaget i ljudpinnen. Den övre halvan som således ligger ovanpå locket visar då grafiskt exakt var ljudpinnen står. Vill man dokumentera ljudpinnens plats kan man ange avstånd på följande sätt:

  • Den korta skalan närmast ljudpinnens plats i riktning mot f-hålet anger ljudpinnens avstånd till stallets kant. Skalan går från 5 – 10 mm.
  • Den långa skalan visar ljudpinnens plats i förhållande till f-hålet. Skalan går från 15-30mm
  • Den korta skalan som går i instrumentets längdriktning anger avståndet mellan ljudpinnen och stallets bakkant.

Ljudpinneverktyget har konstruerats utgående från Sören Åhkers ritning (  http://www.sorenahker.com/sortiment/order.htm ÖVR008). Jag gissar att samma verktyg bör gå att använda också på andra nyckelharps ”familjer”.

Ljudpinneverktyg_openscad

Bilden visar hur verktyget har skapats i programmet OpenScad. Man kunde lika väl ha använt något CAD-program som stöder generering av stl-filer.

Verktyget i bilden är tänkt som en gåva till nyckelharps ”gurun” Esbjörn Hogmark.

Hur kan jag köpa verktyget? Du kan inte köpa det men du kan skriva ut det själv. I slutet av den här artikeln hittar du en länk till ljudpinneverktygets ”.stl”-fil.  Du laddar ner stl-filen och går till någon person som har en 3d-skrivare, till ett bibliotek (gäller åtminstone Helsingforsregionen i Finland) .. eller så går du till en firma som gör 3d utskrifter.

Hur skriver man ut verktyget?

3D-skrivaren drivs av ett kontrollprogrami mitt fall heter programmet ”Repetier-Host” men det finns flera andra som fungerar enligt samma principer.

Steg #1

Ladda ner .stl-filen på datorn till en lämplig katalog. Det enda kravet är att du hittar programmet. Du kan lagra filen på en minnepinne om du vill skriva ut verktyget på en publik skrivare.

Steg #2

Starta kontrollprogrammet i mitt fall Repetier-Host. Sätt på skrivaren. Då programmet startar klickar man ”Connect” för att koppla ihop skrivare och dator.

Steg #3

Ladda in stl-filen i mitt fall finns en knapp ”Load”. Programmet visar nu hur verktyget kommer att se ut i grafisk form på skärmen.

Steg #4

Översätt stl-filen till maskininstruktioner. Detta görs med ett program som kallas ”Slicer” d.v.s. programmet skivar den 3d-modell som stl-filen beskriver i ungefär 0,25 mm höga skivor ch beräknar därefter hur skrivarhuvudet skall röra sig för att fylla skivan med plastmaterial.

Steg #5

Ställ in bäddens temperatur enligt skrivarens instruktioner. I mitt fall kör jag med materialet PLA för vilket bäddens tempeSteg #1ratur kan sättas till 60 grader C och extruderns (utskriftsmunstycket) temperatur till 205 grader C.

ljudpinneverktyg

Bilden visar hur det ser ut på datorskärmen under utskriften. Utskriften kräver ca. 20 minuter d.v.s. det finns precis tid för en kopp kaffe.

Du hittar ljudpinneverktyget här i zip-format. Filen måste packas upp innan den används. Moderna perativsystem packar upp filen då man klickar på den.

Filen finns här: ljudpinneverktyg_nyckelharpa.

Montering efter utskrift

Verktyget skrivs ut i två delar som limmas ihop t.ex. med hjälp av Superlim (Cyanoacrylat), epoxy eller något annat lämpligt lim. Notera att vattenbaserade lim inte fungerar så bra eftersom plasten gör att limmet torkar mycket långsamt.

Steg #1

Slipa ytan på den undre delen d.v.s. den del som har en fyrkant med hål i i den ena ändan. Slipning av ytan gör att vi inte av misstag skrapar insidan av harpan då verktyget används. Den övre delens undre del är helt slät och behöver inte slipas.

Steg #2

Sök fram en 4mm maskinskruv med mutter varefter du stryker lim på fyrkanten i den undre delen. För skruven genom hålet i den undre och den övre delen och dra åt muttern försiktigt. Vrid genast den övre delen så att cirkeln som visar ljudpinnens plats matchar motsvarande urtag i den undre delen.  Du kan också trä en grov nål genom det lilla hålet mellan de två skalorna i verktygets längdriktning. Motsvarande hål finns också i den undre delen.  Använd nålen till att rikta den övre delen i förhållande till den undre så att passningen mellan delarna blir exakt.

Steg#3

Drag åt muttern och vänta någon timme på att limmet stelnar helt.

Man kan göra skalorna tydligare genom att färga skalstrecken t.ex. med vit, silver- eller guldmärkpenna.

Verktyget får fritt skrivas ut och om så önskas också i försäljningssyfte. Vid försäljning bör källan d.v.s. en länk till eller utskrift av den här artikeln följa med verktyget.

Framtidens teknik 3D-maxiskrivare

18/04/2017

 

Vi ser idag en mycket snabb utveckling av 3D-skrivare. Var och varannan dag dyker det upp nya varianter av skrivare som använder nya utskriftsmaterial. De vanligaste skrivarna använder olika plastmaterial PLA, PET och ABS. Plastmaterial är enkla att använda eftersom plast kan formas vid relativt låg temperatur. Det finns också skrivare som skriver ut i metall (flera olika teknologier används) eller i glas eller keramik.

Det verkar sannolikt att tillverkning av olika objekt speciellt i små serier kommer att flytta tillbaka till västvärlden genom att utskrift av enstaka delar kan göras med 3D-skrivare. Om t.ex. reservdelar kan lagras på dator och utskriften ske lokalt så sparar man stora lager- och transportkostnader.

imgp0028_pef_embedded

Fig. 1  Ett exempel på en billig kinesisk 3D-skrivare

Ett exempel på användning av 3D-skrivare är mitt eget lilla projekt där jag använder 3D-skrivare för att skapa i stort sett hela mekaniken till en nyckelharpa av helt ny typ. Instrumentet är inte ännu spelbart men man börjar så småningom se slutet på projektet.

IMGP0877_PEF_embedded

Fig. 2  Halsenoch nyckelmekanismen utskriven på 3D-skrivaren i fig. 1.

Utskrift av metall med 3D-skrivare

En 3D-skrivare kan skriva ut delar som är så komplicerade att de är omöjliga att konstyruera på konventionellt sätt. Exempel på metallkomponenter är delar till flygplan och rymdsonder utskrivna i t.ex. metallen titan.

Video: Utskrift av metalldelar via laserdeposition.

Samma teknik som i bilden ovan kan också användas för att skriva ut i t.ex. keramik eller i andra exotiska material. Alternativa sätt att skriva ut metall är att använda något som påminner om en bläckstråleskrivare som sprutar lim över en pulverbädd. Nya lager pulver läggs successivt på och resultatet blir ett hoplimmat metallpulverföremål som bränns i ugn så att föremålet sintras till kompakt metall.

Utskrift av hus

Om man bygger en stor 3D-skrivare så kan den förses med ett skrivhuvud som t.ex. pumpar betong. Skrivaren kan då snabbt skriva ut t.ex. ett hus från en ritning skapad på dator.

Video: Utskrift av ett miniatyrslott med 3D-skrivare.

Var det här också forntidens teknik?

Jag tittade på en video om den antika staden Petra i nuvarande Jordanien. Videon är mycket intressant genom att den visar en mix av mycket kraftigt eroderade grottor etc. samt i stort sett helt oeroderade ruiner som är kanske 2000 år gamla. De nya byggnaderna är konstruerade ur ”konventionellt” utskurna stenblock och byggnaderna är konstruerade ur separata formgivna block.

Ungefär 21:44 minuter in på videon stöter man på strukturer som ser ut som väggen på miniatyrslottet ovan. Vad är det? Vid 29:15 visas huvudet av en elefant … igen samma struktur som ovan.

Jag tar inte ställning till vad ovanstående glimtar från videon egentligen visar men fantasieggande är det 😉 .

Tagelharpa/Jouhikko/Hiiu kannel

02/08/2015

En vän gav för en vecka sedan boken ”The Bowed Lyre Jouhikki” till låns då vi hade vår vanliga fredagsspelning på Arbetets Vänner i Helsingfors. Boken behandlar stråkharpor i olika varianter från Estland, Finland och Sverige. Boken gav mig inspiration att återkomma till tagelharpan (det här blev nummer två). Det instrument den här artikeln beskriver är att betrakta som en ren prototyp där jag främst har varit ute efter att få dimensionerna ungefär rätt så att instrumentet blir spelbart. Jag bygger sannolikt ett instrument till inom den närmaste framtiden eftersom jag naturligtvis har insett att byggmetoden kan förbättras avsevärt.

Genom att t.ex. göra kroppen något tunnare blir det mycket lättare att såga ut uppningen för vänster hand maskinellt med lövsåg … i det föreliggande exemplaret är stommen några millimeter för tjock för att man skulle kunna vrida stommen fritt vid sågningen. Resultatet var att sågningen måste göras små bitar i taget och den sågade ytan blev relativt ojämn vilket gav mera arbete vid slipning/putsning.

IMGP6140_PEF_embedded

Fig. 1 Utgångspunkten var grovt byggnadsvirke 50 x 150 mm. På bilden har materialet grovhyvlats.

Talharpan jag valde att bygga är av finsk modell med tre strängar. Eftersom det inte finns någon standardiserad form för en talharpa d.v.s. inga standardritningar existerar på nätet så började jag arbetet med att utgående från nogra bilder på existerande talharpor skissa upp en egen modell.

IMGP6137_PEF_embedded

Fig. 2 En grov skiss av det blivande instrumentet. Dimensionerna bestämdes av bredden på materialet jag hade tillgång till samt av önskemålet att mensuren skulle vara ungefär 330 mm.

Skissens form överfördes till stombiten och ytterkonturen sågades ut i bandsåg. Det här var ett misstag. Jag borde ha fräst limytorna för locket innan sågningen … mycket arbete skulle ha sparats. Locket är nedsänkt ca 4 mm i stommen.

Halsen sågades ut i bandsåg. Den största sågtjockleken är mycket nära 150 mm … men det fungerade. Mitt bandsågsbett kunde ha varit något smalare vilket skulle ha underlättat den ganska kraftiga kurvan sedd från sidan i fig. 2.

Den inre delen av klanglådan sågades nu ut med bandsåg. Jag sågade mig in i stommen från ändträt och limmade ihop snittet med varmt snickarlim efter sågningen utan någon putsning av sågytan. Snittet är nästan osynligt. Sargerna kunde ha sågats något tunnare … nästa gång.

Följande skede var att såga ut öppningen för vänster hand. Denna sågning skedde med motorlövsåg. Sågningen skulle ha förenklats väldigt mycket om stommen skulle ha varit 3 – 5 mm lägre (plattare). Stommen skulle då rymmas under sågens arm vilket hade sparat rätt mycket tid vid sågningen. Sågningen gick att göra men den var besvärlig.

Lock och botten gjordes i al eftersom jag råkar ha några lämpliga plankor liggande. Det bästa materialet skulle ha varit kvistfri gran men jag hade inte lämpligt material liggande som kunde offras för ett prototypsinstrument. Många olika trädslag har använts för talharpor vilket betyder att det här instrumentet fortfarande kan anses vara autentiskt. Plattorna gjordes av 100 x 20 mm alplank som i bandsåg klövs till två bitar vardera ca. 10 mm tjocka. Bitarna hyvlades därefter i en tjocklekshyvel till 4,5 respektive 6 mm tjocklek varefter bitarna limmades ihop till 200 mm breda plattor. Då limmet hade torkat kördes plattorna ännu några varv genom hyveln för att de skulle vara jämntjocka och limforgarna rena.

IMGP6216_PEF_embedded

Fig. 3 Limning av lock/botten. Materialet är al. Plattorna är gjorda så att en alplanka 100×22 mm klyvs på längden. Därefter hyvlas delarna till ungefär korrekt tjovklek varefter de limmas ihop med varmlim (traditionellt snickarlim).

 

IMGP6134_PEF_embedded

Fig. 4 Locket limmas på den grovformade stommen.

Stämskruvarna gjordes av en. Jag lade för flera år sedan undan några bitar en med en diameter på ungefär 30 mm. De här bitarna kom nu till användning. Stämskruvarna svarvades ur detta material.

IMGP6144_PEF_embedded

Fig. 5 Stämskruvarna är svarvade av En från från det egna området. Instrumentet har en liten basbjälke även om detta inte är traditionellt. Basbjälken är gjord av gran.

IMGP6146_PEF_embedded

Fig. 6 Bottenplattan limmas på.

Efter att lock och botten limmats på skars kanterna jämna med kniv varefter kroppen formades till sin slutliga form med kniv.

Stall och stränghållare gjordes av ek eftersom jag råkade ha en lämplig bit liggande. Lönn skulle ha varit ett för musikinstrument merra traditionellt material men ek har väldigt likartade mekaniska egenskaper. Bitarna sågades ut med lövsåg varefter de skars till önskad form med kniv.

IMGP6206_PEF_embedded

Fig. 7 Instrumentet i spelbart skick en vecka efter den första titten i boken 🙂 . Tagelharpan/Jouhikon har färgats med bränt socker varefter den har fått några lager spritlack (Shellack). Tanken är att lägga på ytterligare två till tre tunna lager oljelack för att ge djup åt ytan.

Jag har färgat in några fioler med bränt socker eller egentligen mörk sirap som kokats in i kastrull så att sockret blir nästan svart. Då sockret har bränts tillräckligt blir den torkade sockerytan inte klibbig. Eftersom färgen består av förkolnade kolhydrater kan man anta att den är relativt beständig … tänk tjära. Instrumentet lackades några varv med spritlack … eftersom spritlack torkar snabbt och jag ville ha instrumentet med till Altra Volta. Planen är att lacka instrumentet några varv med oljelack senare. Oljelack fungerar bra på shellackgrund.

Strängar

Strängar till en tagelharpa görs av tagel.  Anders gjorde tre strängar med 20, 40 och 60 tagel. Då strängarna stämdes visade det sig att tagelmängderna var något för stora för mitt instrument. Lämpliga tagelmängder skulle antagligen vara 16, 35 och 50. Det är naturligtvis möjligt att kvaliteten på de begagnade taglen inte var speciellt bra. Strängtillverkningen blir ett intressant framtida projekt.

Tillverkning av strängar till en tagelharpa.

Stråkharpa, exempel på musik

Cupola + stråkharpa.

Traditionell finsk folksång + stråkharpa (Jouhiorkesteri)

Pekko Käppi & Jouhiorkesteri

Sofia Joons sjunger och spelar stråkharpa.

Finsk musik på stråkharpa/jouhikko.

Fantasier i realtid

11/05/2015

Jag har igen gjort en serie modifikationer på min Hardangerfiol. Jag har uppfattat att fiolens låga register har blivit rätt torrt eventuellt till följd av att lacket med åren hårdnar eller att träet långsamt oxiderar. Jag har försiktigt slipat lock och botten på insidan för att ge instrumentet lite mera must/djup. En justering är dock alltid en balansgång. Jag gillar mitt instrument och jag vill inte modifiera det så att det blir ett helt annat instrument eller så att den ljusa klangen i instrumentet försvinner.

P1040108

Min Kinesiskbyggda hardangerfiol.

 

fiol_botten

Slipning av området A gör tonen rundare/mörkare. Det är skäl att slipa extremt försiktigt här. Jag slipade denna gång området A ungefär 20 drag på insidan. Området B gör tonen ljusare. I allmänhet är man tvungen att slipa både A och B flera gånger för att hitta den balans i tonen man vill ha. Slipning av området C i bottenplattan ger en effekt som påminner om slipning i området B. Området E i bottenplattan påminner om området A i locket men effekten är mycket svagare.

Jag deltog i en sång/musikkväll i ”Fredsstationen” i Böle i Helsingfors torsdagen den 7.5.2015. Publiken bestod av främst ungdomar i åldern 15 – 30 år. Då jag blev uppmanad att spela/sjunga efter ett antal stycken tydligt inspirerade av Sufimusik beslöt jag att spela en improviserad ”meditation” på den modifierade Hardangerfiolen. Nedanstående ljudexempel är återskapad ur minnet vilket betyder att tonarten är densamma och den allmänna känslan bör bara rätt lika … men liksom all improviserad musik är det fråga om någonting som skapas i stundens ingivelse och sedan försvinner i intet. Stycket har ingen egentlig rytm och längden är rätt exakt 5 minuter. Stycket får spelas/reproduceras fritt utan ersättning. Källan får gärna anges men det är inget krav.

Inledande justering av Sockerfiol #2

31/03/2015

Sockefiol nummer 2 är lackad och börjar så småningom vara i spelbart skick. Jag har avtalat med min vän Zoltan Takacs som är toppviolinist vid den finska radioorkestern att vi gör den akustiska stämningen av fiolkroppen tillsammans så att han har möjlighet att se processen. Samtidigt har jag fördelen att ha ett extra par goda öron och en person som det går att diskutera skiftningar i fiolklangen med.

Innan injustering av kroppen är möjlig måste naturligtvis fiolen som sådan fungera. Den här artikeln beskriver hur fiolen ställs upp så att den är spelbar dock utan att göra bestående förändringar i fiolen. Slutresultatet av den här inledande justeringen är ungefär det slutresultat vanliga byggare får d.v.s. det här är vad resultatet råkade bli för just den här fiolen. För min process är det här startpunkten i en justeringsprocess som görs i små steg under några veckors tid.

IMGP2564

IMGP2554

Det första steget var att grovt yxa till ett stall med korrekt höjd och stränga fiolen så att det gick att se att stränghöjden var korrekt. Fötterna var ännu grovt tillskurna men det hindrar ju inte att man tar de första tonerna ur instrumentet. Mätningar av Dünnwaldparameterarna gav följande resultat:

File to process: 01_s2_initial.txt

Dunnwald parameters for :01_s2_initial.txt

A = 57.6187575814

B = 58.0013245333

C = 53.5653649062

D = 50.5725805287

E = 46.7906861788

F = 37.4920647702

L[Db] = -9.660404

ACD – B = -4.96729515679

DE – F = 10.681078587

Speciellt L-parametern är ganska usel. Fiolen har en mjuk något ”murrig” klang. Inte alls illa egentligen. Då fiolen provspelades av en folkmusikerbekant så gillades den skarpt … men stallet måste åtminstone justeras in så att det ser ut som ett stall. Stallet slipades in mot fiolen så att springorna under stallsfötterna försvann. Samtidigt sänkte jag stränghöjden en aning på E-sidan och tunnade av stallet på mitten. Resultatet av dessa förändringer blev:

File to process: 02_s2_stallet_inslipat.txt

Dunnwald parameters for :02_s2_stallet_inslipat.txt

A = 57.669968814

B = 57.57735385

C = 53.06503775

D = 50.2522291839

E = 47.6638228344

F = 39.8865612984

L[Db] = -3.291752

ACD – B = -4.80060196111

DE – F = 8.72344368901

Brilliansen minskade en aning (DE-F) medan framför allt L-parametern steg till ett område som börjar vara ok.

Spektret visar att området speciellt 3 … 4 kHz ligger rätt lågt vilket leder till att parametern DE-F också blir låg. Vad kan justeras?

Parametrarna L och ACD-B kan höjas genom att justera bottenplattan som nu inte ”ringer” korrekt. Knacktestning av bottenplattan ger ett dämpat ljud som snabbt klingar av. Jag lämnar dock dessa justeringar till torsdagen den 2.4 så att justeringarna kan göras tillsammans med Zoltan.

Värmebehandlar nu stallet utan andra modifikationer. Värmebehandling i (torr) kastrull så att temperaturen på kanske 5…10 minuter höjs till 130 grader C varefter stallet får svalna till remstemperatur. Den andra sidan av stallet behandlas på samma sätt.

File to process: 03_s2_stall_värmebehandlat.txt

Dunnwald parameters for :03_s2_stall_värmebehandlat.txt

A = 56.0291038605

B = 55.18143365

C = 52.0056394375

D = 48.6804344598

E = 45.523117702

F = 36.7762417016

L[Db] = -7.811827

ACD – B = -3.89359583519

DE – F = 9.90102120175

Vi ser att brilliansen ökade något (DE-F) och nasaliteten förbättrades marginellt. L-parametern försämrades men vi gör oss inget problem i detta skede eftersom vi sannolikt kan påverka L-parametern genom att flytta ljudpinnen. Jag satte in ljudpinnen rätt långt bakom stallet. Följande skede blir nu att stegvis flytta ljudpinnen framåt.

IMGP2539

Värmebehandlingen gick till så att jag lade stallet i en tom torr kastrull och värmde upp kastrullen på en elplatta till 130 grader C. Temperaturen kontrollerades med gjälp av en IR-termometer (Biltema). Då temperaturen nådde 130 grader stängdes plattan av och kastrullen/stallet fick svalna till rumstemperatur. Stallet svängdes sedan och den andra sidan behandlades på samma sätt.

Resultetet blev att stallet mörknade en aning. Om man inte följer med temperaturen är det lätt att bränna stallet vilket inte ser bra ut. Tänk på bakande av pepparkakor …

Vilken effekt har värmebehandlingen av stallet. Jag fällde stallet mot ett keramikfat och mätte ljudet från stallet före och efter värmebehandlingen. Resultatet blev:

s2_stall_obehandlat

Motsvarande spektrum efter värmebehandlingen har följande utseende:

s2_bridge_heat_treated_130degC

Notera hur de stora topparna blir jämnare och hur området 5 – 10 kHz stiger betydligt.

Observera!

Spektret är en kombination av ljudet från et keramikfat och stallet. Det är mycket svårt att dra några som helst slutsatser av spektren förutom att de höga frekvenserna verkar förstärkas vilket också är önskvärt.

Efter värmebehandlingen flyttades ljudpinnen i två steg. I det första steget flyttades ljudpinnen ungefär 0,5 mm i riktning mot stallet. Situationen före flyttningen framgör ur följande bild. Notera att f-hålets kanter med avsikt inte har färgats ännu eftersom den inre slipningen på grund av tung trafik in genom f-hålen sannolikt skulle ge vissa skador på lackskiktet vid kanten.

IMGP2550

Ljudpinnens startläge.

Spektret mättes innan ljudpinnen flyttades och Dünnwaldparametrarna beräknades ur spektret:

File to process: 04_s2_before_sound_post_movement.txt

Dunnwald parameters for :04_s2_before_sound_post_movement.txt

A = 54.5373453256

B = 53.34066135

C = 48.2681126562

D = 47.462948046

E = 42.6428494967

F = 34.945097375

L[Db] = -5.981938

ACD – B = -3.84089632531

DE – F = 9.45972091912

Stallet flyttades nu framåt mot stallet ungefär 0,5 mm och spektret mättes igen.

File to process: 05_s2_snd_post_0.5mm_towards_bridge.txt

Dunnwald parameters for :05_s2_snd_post_0.5mm_towards_bridge.txt

A = 57.7177763721

B = 58.3479794667

C = 52.1596876562

D = 49.8472987126

E = 47.4275626689

F = 38.7599602016

L[Db] = -4.008617

ACD – B = -5.9548351642

DE – F = 9.5521278278

Instrumentet fick nu vila i en timme varefter spektret mättes på nytt och motsvarande Dünnwaldparametrar beräknades:

File to process: 06_s2_before_second_snd_post_move.txt

Dunnwald parameters for :06_s2_before_second_snd_post_move.txt

A = 57.0221154884

B = 55.7270328

C = 50.574507375

D = 49.1470482529

E = 45.2956242649

F = 37.7892715202

L[Db] = -5.935711

ACD – B = -4.20772168889

DE – F = 8.91422621933

Ljudpinnen flyttades nu ca. 1 mm mot stallet med följande resultat:

File to process: 07_s2_snd_post_1mm_towards_bridge.txt

Dunnwald parameters for :07_s2_snd_post_1mm_towards_bridge.txt

A = 57.042697814

B = 55.2120464667

C = 50.7065035937

D = 48.6203173218

E = 45.0775141523

F = 37.4736369274

L[Db] = -2.546658

ACD – B = -3.94407283704

DE – F = 8.89893552636

Fiolen får nu vila ett par dagar innan den inre slipningen tar vid. Det kan vara kul att jämföra ovanstående inte ännu speciellt goda parametervärden med några kända Guarnerius/Stradivariusvioliner. Värdena är tagna ur Anders Buens artikel ”On Timbre Parameters and Sound Levels of Recorded Old Violins”. Artikeln finns på nätet. Googla på artikelns namn och Anders Buen.

Vi hittar följande:

Sockerfiolens L-parameter (bas) är -2.5 i detta skede vilket motsvarar Guarneri del Gesu 1742 ”Wieniawski” motsvarande parameter.

Sockerfiolens nasalitet ACD-B-parameter är -3.9 vilket är något sämre än Guarneri del Gesu 1735 ”Plowden” (-2.1).

Sockerfiolens brillians DE – F-parameter är 8,9 vilket motsvarar Guarneri del Gesu 1726 ”Stretton”. Värdet är tydligt bättre än motsvarande för ovannämnda ”Plowden” (7.0).

Notera att ovanstående endast är en intressant lek med siffror och ett sätt att kategorisera toppinstrument. Ljudmässigt ligger vi dock inte i det här skedet alls dåligt till.

Följande artikel kommer att behandla inre justering av sockerfiolen ovan. Målet är att i viss mån höja alla parametrarna (högre värde är bättre). Ett mål kunde vara att försöka få fiolen att mäta in på följande sätt:

L[Db] = -2

ACD – B = 1.7

DE – F = 12

Får vi fiolen justerad på detta sätt har vi ett instrument vars Dünnwaldparametrar motsvarar Antonius Stradivarius 1692 ”Oliveira”. Det blir intressant att se hur långt vi vågar gå. Notera att justeringen kommer att kräva ett antal veckor. Sannolikheten är mycket liten att man på ren tur hittar ett bra läge efter några timmars filande.

 


Pointman's

A lagrange point in life

THE HOCKEY SCHTICK

Lars Silén: Reflex och Spegling

NoTricksZone

Lars Silén: Reflex och Spegling

Big Picture News, Informed Analysis

This blog is written by Canadian journalist Donna Laframboise. Posts appear Monday & Wednesday.

JoNova

Lars Silén: Reflex och Spegling

Climate Audit

by Steve McIntyre

Musings from the Chiefio

Techno bits and mind pleasers

Bishop Hill

Lars Silén: Reflex och Spegling

Watts Up With That?

The world's most viewed site on global warming and climate change

TED Blog

The TED Blog shares interesting news about TED, TED Talks video, the TED Prize and more.

Larsil2009's Blog

Lars Silén: Reflex och Spegling

%d bloggare gillar detta: