Archive for the ‘Fysik’ Category

Selkävaivat ja C-vitamiinin puute

07/02/2019

Kommentar till mina läsare:
Jag skriver undantagsvis på finska eftersom jag egentligen vänder mig till en vän som kan behöva den här informationen. Artikeln behandlar varför C-vitaminbrist kan vara orsak till rygg och ledproblem samt vad man kan göra för att eliminera orsakerna till problemen.

Mihin keho tarvitsee C-vitamiinia

Noin 30% kehon painosta on kollageenia eli ”liima-aine” josta keho tekee jänteitä, osana luustoa, muodostaa nivelten liukupinnat, iho … jne. Kyseerssä on siis kehon universaalirakennusaine.

Jos artikkeli käsittelee C-vitamiin tarve niin miksi aloitan kollageenista? Syy on siinä, että kollageeni muodostuu proteiinikuitukimpuista jotka on kierrettu kolmen kuidun naruksi ja vahvistettu ”hitsaamalla” kuidut yhteen c-vitamiinilla. Tyypillisessä kuitukimpussa kuiti hitsataan joka kolmas kierros.  Kun tarkastellaan kollageenin rakenne kemiallisesti ja todetaan, että jokaisen hitsin muodostamiseksi tuhotaan yksi c-vitamiinimolekyyli niin voidaan laskea, että kollageenisynteesiin tarvitaan karkeasti yhtä paljon c-vitamiinia kuin muodostettava kollageenimäärä. Mikäli c-vitamiinia ei ole tarpeeksi niin kollageenia muodostuu edelleen mutta laatu huononee askel askeleelta kun yhä enemmän ”hitsejä” jää tekemättä.  Kun c-vitamiinin saanti vuorokaudessa putoaa 50 mg alapuolelle niin voidaan laskea, että ehkä  joka sadasviideskymmenes ”hitsi” on paikalla. Muodostunut kollageeni on nytt verrattavissa pumpulituppiin ja kun tällaista huonolaatuista kollageenia käytetään verisuonten seinämiin niin seinämä vuotaa eli alkaa tulla mustelmia ilman ”syytä”. Kollageeni on liima joka pitää hampaat kiinni alustassa suussa. Kun kollageeni on huonoa hampaat irtoavat. Kun kollageeni on huonolaatuista niin nivelpinnat eivät enää kestä rasitusta ja luu alkaa hangata suoraan luuta vastaan.  Selkärangan välityynyt vaativat hyvälaatuista kollageenia koska muuten voi muodostya pullistumia (kuva alla) jotka erittäin kivuliaasti painavat hemoja. Psyykkisesti c-vitasmiinin puute aiheuttaa vakavaa masennusta.

Yllä kuvattu oiresarja kuvaa tyypillisiä keripukin oireita mutta samalla oireita jotka ovat melko tyypillisiä nykyihmisillä jotka ovat keski-ikää vanhempia. Tiedämme esim. , että hammaslääkärit ahkerasti mittaavat ientaskut koska tästä voidaan ennakoida hampaan irtoaminen. Entäs jos suuri joukko oireita loppujen lopuksi ovat kroonisen keripukin oireita. Lääketieteessä on laitettu päivittäinen C-vitamiinitarve älyttömän pieneksi (2x keripukiraja). Asia pahenee koska tiedetään, että sokeri ja c-vitamiini kilpailevat kehossa ja suuri sokerikulutus pienentään kehon käytettävissä olevat c-vitamiinivarat. Tämä johtuu siitä, että sokerimolekyyli ja c-vitamiinimolekyyli muistuttavat toisiaan paljon … koska eläimet tuottavat c-vitamiinia sokerista. Ihmisen kohdalla on pieni ongelma. Ihmisen c-vitamiinisynteesi tarvitsee useita kemiallisia askelia ja viimeinen näistä on rikki eli Ihminen, Apinat, Marsut ja muutama laji lisää eivät pysty itse tuottamaan c-vitamiinia vaan joutuvat hankkimaan c-vitamiinia ruoasta.

Kuva:  Selkärangen välilevyn pullistuma joka painaa hermon juurta. Hyvin kivuliasta.

Miten paljon c-vitamiinia tarvitaan

Tiedetään, että jos ihmisjoukolle annetaan 60 mg c-vitamiinia päivässä niin 70% näillä ei ole keripukioireita. Kääntäen RDA varmistaa, että kolmellakymmenellä prosentilla on joitakin keripukioireita. Kysymys, miksi suositus on laitettu näin alas, vaatii erillisen artikkelin mutta olen sitä mieltä, että tällä tavalla varmistetaan jatkuva vuo uusia potilaita lääketeollisuudelle (Onko RDA raja järkevä (englanniksi)).

Jos RDA 60 mg johtaa tilanteeseen jossa huomattava osa ihmisjoukossa edelleen oireilee eli ovat keripukin partaalla niin mikä olisi järkevä taso joka pitäisi keripukioireet kunnolla loitolla? Yksi tapa on tarkastella miten paljon c-vitamiinia eläimet tuottavat. Esim. 80 kg painava vuohi tuottaa noin 15g c-vitamiinia.  Tiedetään, että luonnollisessa ympäristössä elävä gorilla syö noin viisi grammaa c-vitamiinia päivässä. Eli jos oletetaan, että me kemiallisesti toimimme kuin eläimet niin määrä tämän pohjalta voisi olla ainakin muutama gramma c-vitamiinia päivässä.

Totesin yllä, että kollageenin muodostamiseen kuluu karkeasti yhtä paljon c-vitamiinia kuin muodostunut kollageeni. En mene kemiallisiin yksityiskohtiin vaan pidetään tämä yhtenä oletuksena. Lääketieteessä on jonkunlainen ”konsensus”, että ihmiskeho uusiutuu karkeasti seitsemässä vuodessa. On selvää, että jotkut elimet uusiutuvat paljon nopeammin ja toiset hitaammin. Jos oletetaan, että seitsemän vuoden uusiutumisvauhti on karkeasti oikea niin voidaan laskea c-vitamiinitarve tästä.

Oletetaan, että keho painaa 80 kg josta kollageenia silloin on noin 24 kg (30%).

Jos keho uudistuu seitsemässä vuodessa niin pitäisi päivittäin muodostua kollageenia seuraavasti:

Päivätuotanto (kollageeni) = 24kg/(7*365pv) = 0.0093 kg/päivä.

Eli päivässä muodostuu hieman alle kymmenen grammaa kollageenia. Totesin yllä, että tarvitaan vastaava määrä c-vitamiinia hyvänlaatuisen kollageenin muodostamiseksi eli tämän karkean laskelman mukaan tarvitaan noin 9,3g c-vitamiinia päivässä. Huomaa toki, että tarve on vielä suurempi koska kehon immunijärjestelmä tarvitsee myös c-vitamiinia toimiakseen. Laskettu karkea arvio täsmää melko hyvin eläinten c-vitamiinituotantoon. Tiedetään, että osa c-vitamiinista hajoaa suolistossa ennenkuin pääsee kehoon eli voitaneen vielä nostaa tarvittava määrä. Kemian nobelin palkinnon saanut Linus Pauling, joka on pidetty maailman suurimpana kemistina, söi 18g c-vitamiinia päivässä ja perusteli tämä nimenomaan sillä, että vain osa on hyödynnettävissä … hän eli 93 vuotiaaksi.

Selän vahvistaminen, korjaaminen c-vitamiinilla

Jos selkärangan välilevyn materiaali, kollageeni, on huonolaatusta niin välilevyn kuormittaminen nostamalla, kiertämällä selkä voi aiheuttaa välilevyvaurion, pullistuman, joka vai painaa hermoa. Vaurioitunut välilevy paranee usein itsestään kunhan ei aiheuteta lisää vaurioita mutta paranemiseen voi mennä pitkä aika.

Entäs jos osasyy vaurioon olikin huonolaatuinen kollageeni joka taas oli c-vitamiinipuutoksen seuraus. Tuntu silloin selvältä, että lisäämällä c-vitamiinia niin keholle annetaan paremmat mahdollisuudet korjata vaurio koska ainakin korjaukseen käytetty aine on hyvälaatuista.

Mikä olisi päivittäinen c-vitamiinimäärä? Nähtiin yllä, että esim. vuohi tuottaa jopa 15g c-vitamiinia päivässä (kerhon paino 80 kg). Järkevää olisi silloin varmasti kokeila 4-5g ja tästä hitaasti nostaa annos. Jos alkaa tulla ripulia niin annos on noussut liian korkeaksi.

Yleinen näkemys on, että oikea c-vitamiinitaso löydetään ns. titraamalla eli nostetaan annos hitaasti kunnes alkaa tulla ripulia jonka jälkeen annos puolitetaan. Tämä on karkeasti haluttu taso. Toinen tapa on lähteä samalle tasolle kuin eläimet eli 80kg painavi henkilön päiväannos olisi silloin n. 10g.

C-vitamiini varastoituu huonosti kehoon ja ylimääräinen c-vitamiini poistuu virtsalla joka voi saada hedelmätuoksun ylimääräisestä c-vitamiinista. Koska ylimäärä poistuu virtsalla niin c-vitamiini tulisi ottaa jaettuna annoksena läpi päivän esim. aamulla, päivällä, iltäpäivällä ja illalla. Itse yritän ottaa 2,5g aamulla, 2,5g päivällä ja 2,5g illalla. Joskus voi tulla annos lisää tai pudota pois.

Missä muodossa c-vitamiini kannattaa ottaa

C-vitamiinin kemiallinen nimi on Askorbiinihappo. Pieniä määriä voidaan haluttaessa ottaa askorbiinihappona mutta yllä kuvatut usean gramman annokset ei missään nimessä tulisi ottaa raakana askorbiinihappona vaan tehdään Samariini-tyyppinen juoma sekoittamalla yksi teelusikallinen askorbiinihappoa, yksi hieman pienempi teelusikallinen ruokasoodaa vesilasiin. Tästä saadaan hyvänmakuinen kivennäisvesi joka tuo keholle noin 2,5g c-vitamiinia. Toinen vaihtoehto on käyttää 1000mg poretabletteja ja näitä voi veden kanssa ottaa 3-5 päivässä. Poretablettiin on lisätty soodaa valmiiksi.

Miten nopeasti nähdään tuloksia

Krooninen puutostila joka eiheutti esim selkä, sydän tai nivelvaivat ovat kehittyneet hitaasti vuosien yli. Nähtiin yllä miten kehon korjausmekanismin kierrosaika on noin seitsemän vuotta. Vaurioiden korjaaminen vaatinee tästä syystä melko pitkän ajan vähintään viikkoja tai kuukausia. Toisaalta tiedetään, että c-vitamiini myös toimii luonnollisena kipulääkkeenä eli oireet saattavat parantua melko nopeasti.

Itse olen vuosia syönyt noin 5-10g c-vitamiinia päivässä ja kokemukset ovat seuraavat:

  • Ei ole ollut selkävaivoja vuosiin
  • Nuoruudessa pyöräilystä tulleet polviongelmat ei ole haitanneet sen jälkeen kun olen ryhtynyt syömään paljon c-vitamiinia.
  • Hammaslääkärikäynnit ovat vähentyneet … ei näytä enää televan reikiä. Oletan, että tämä johtuu siitä, että kollageeni tarvitaan elävän hampaan huokoisten kanavien tukkimiseen ulkopinnassa. Mikäli kollageenia ei ole niin bakteerit pääsevät helposti hampaan sisälle.

Mitä kannattaa välttää

Totesin yllä, että puhdas c-vitamiini tulisi ottaa ruokasoodan kanssa jolloin c-vitamiini kemiallisesti muuttuu askorbaatiksi joka on pH mielessä neutraali. Olen kokeillut itselleni ja koiralleni puhdasta Askorbiinihappoa mutta näyttää siltä, että muutamassa päivässä alkaa tulla esim. varpaiden niveliin oireita jotka olen tulkinnut kihtin alkuoireiksi. Kihti muodostuu kun kehossa on ylimääräistä virtsahappoa yhdistettynä alhaiseen pH arvoon. Tilanne korjaantui heti ruokasoodan kanssa joka nostaa pH-arvon. Tämä voi ihan yleisestikin olla järkevä tieto ihmisille joilla on kihtia. Puoli teelusikallinen ruokasoodaa veteen ja juodaan kivennäisveden tapaan poistaa oireet muutamassa tunnissa. Toisaalta ei kannata menna soodan kanssa liiallisuuksiin koska ruoansulatus tapahtuu happamassa ympäristössä eikä haluta vaikuttaa mahan toimintaan.

Huomaa, että c-vitamiinista keho myös tuottaa virtsahappoa eli suuret c-vitamiiniannokset nostavat jonkun verran virtsahapon määrä kehossa.

Mikä on yllä oleva c-vitamiiniannoksen suhde RDA:han

Jos oletetaan, että päiväannos laitetaan kuuteen grammaan niin puhutaan annoksesta joka on noin satakertainen verrattuna RDA:han. Tämä annos on yleensä täysin ok ja keho ilmoittaa itse milloin annos on liian suuri (ripuli). Laskennallisesti tämä tarkoittaisi, että vähän enemmän kuin joka toinen ”kollageenihitsi” on paikalla eli pitäisi olla suhteellisen hyvälaatuista kollageenia.

Entäs jos syön vähän enemmän hedelmiä

Tyypillinen keskikokoinen appelsiini sisältää noin 70 mg c-vitamiinia. Jos kuuden gramman c-vitamiiniannos yritettäisiin saada appelsiineja syömälla niin tarvittaisiin:

Appelsiinejä päivässä = 6g/0.07g = 85 appelsinia päivässä.

On ihan selvää, ettei kannata edes yrittää saada isompi annos c-vitamiinia hedelmiä syömällä koska silloin elämä olisi kuin gorillan elämä jossa suuri osa päivästä menee syömiseen. On ihan eri asia, että järkevä hedelmämäärä on hyväksi. Liiallinen hedelmien määrä, esim. yllä kuvattu 85 appelsiinin syönti päivässä ja päivästä toiseen, todennäköisesti pitemmällä tähtäimellä aiheuttaisi rasvamaksan samaan tapaan kuin alkoholin suurkuluttajalle. Syy  on hedelmäsokeri (fruktoosi) joka keho käsittelee maksassa suunnilleen samalla tavalla kuin alkoholi.

Yllä olevan c-vitamiinin lisäksi voi olla hyödyllistä ottaa erilaisia B-vitamiineja (B12). Löytyy esim. poretabletteja jossa on pieniä annoksia erilaisia erilaisia B-vitamiineja. Talvella voi olla järkevää ottaa jonkun verran D, E ja mahdollisesti K-vitamiinia. Magneesiumi on aina tarpeen …

Englanninkielistä lukemista:

Selkärangan ahdistuma (stenosis).

Äggplotter, bygg själv!

05/02/2019

Det är alltid kul att lära sig något nytt och att tvingas motionera de små grå cellerna innanför det grå håret med problemlösning och felsökning av något man aldrig har lekt med tidigare.

Det är snart påsk igen, som baha’i ser jag fram mot baha’i nyår Naw Ruz … i båda fallen har ägg en plats i måltiderna i anslutning till dessa högtider. Det är för övrigt intressant att se hur många sedvänjor med en ursprungligen Zoroastrisk bakgrund (från det antika Persien) lever kvar i olika sedvänjor från Afghanistan till Spanien. Sedvänjorna har helt enkelt modifierats så att de passar ihop med den lokala religionen varefter man kan glömma varifrån sedvänjorna kommer.

I den Nordiska traditionen hör ägg, ofta snyggt målade, till påsktraditionen. Man färgar ägg på olika sätt. Själv minns jag hur man kokade ägg tillsammans med lämpliga växter för att ge äggen en trevlig färg. Senare har jag många gånger ritat figurer på ägg tillsammans med barnen. Vad är då naturligare än att använda moderna hjälpmedel för att göra mera avancerade utsmyckningar t.ex. i form av geometriska mönster som är alltför arbetsdryga eller komplicerade för att göras för hand.

Videon ovan visar en Ägg skrivare som dock ser relativt komplicerad ut 🙂 . Det här projektet använder dock betydligt bättre, och dyrare stegmotorer än vad jag använde.

Jag hittade en variant som kan skrivas ut med 3d skrivare och som såg snygg och väl genomtänkt ut. Bygget av den varianten och problem i anslutning till detta bygge beskrivs i den här artikeln. Jag utgick från den här äggplottern:

Vad behöver jag för projektet

Filerna som behövs för 3d utskrift av mekaniken hittar man på thingiverse i form av en stl-fil. Stl är en beskrivning av hur de mekaniska delar som skall skrivas ut med 3d skrivare ser ut. Innan skrivaren kan skriva ut komponenten måste stl-filen vidarebehandlas av ett lämpligt program som skär upp föremålet i en serie skikt  som 3d skrivaren sedan kan rita ut skikt för skikt och på såsätt långsamt bygga upp hela det föremål som skrivs ut. Jag använder programmet slic3r för att vidarebehandla stl-filen. Skrivarprogrammet jag använder är Repetier-Host V1.6.2.

Problem #1

Min 3d skrivare klarar av att skriva ut föremål med dimensionerna ca. 200x200x200 mm³.  Det visade sig att alla delar till Ägg skrivaren fanns i samma fil som kräver en betydligt större skrivare än den jag har. Alternativen är då att antingen hitta någon firma med en skrivare med tillräckligt stor byggyta … eller att modifiera stl-filen så att bitarna kan skrivas ut på min skrivare. Jag valde det senare alternativet.

Då jag själv konstruerar föremål som skall skrivas ut på 3d skrivare så använder jag programspråket openscad för att designa föremålen. Jag kan enkelt läsa in en stl-fil i openscad:

storbit1

Jag använder helt enkelt kommandot import( … ); för att läsa in stl-filen som ett enda stort föremål. Därefter använder jag kommandot difference() på den inlästa filen och använder stora lådor (klossar) som skär bort de delar jag  för tillfället inte vill se. Det spelar inte någon roll på vilket område på skärmen den kvarvarande delen finns, den centreras automatiskt av skrivaren.

Jag klippte söner stl-filen i tre olika föremålsgrupper d.v.s. skalet blev två olika bitar och de små mekaniska delarna blev en egen grupp. De olika beskurna delarna skrevs sedan ut separat. Jag antar att motsvarande funktionalitet finns i de flesta CAD-program som stöder 3d utskrift.

Utöver plastdelarna behövde jag två stycken små kullager, skruvar i olika dimensioner som jag klippte till lämpliga längder med hjälp av en Abico-tång. Lager hittade jag på en lokal järnaffär och skruvar har jag på lager i olika dimensioner.

Hopplockning av styrelektroniken

Skalet är konstruerat för en Arduino UNO med stor USB (typ B) kontakt. Jag har olika varianter av processorkortet på lager så jag valde helt enkelt en som fysiskt var kompatibel med en Arduino Uno. Processorkortet kostar kanske sex dollar på ebay.

Ett litet RC-servo av lämplig storlek hittade jag i miljonlådan (Tower Pro micro servo 9g). Ett servo kan beställas från ebay för någon dollar.

Jag hittade stegmotorn inklusive drivkort ULN2003 hos en elektronikaffär i Åbo och beställde den över nätet (https://www.triopak.fi/fi).

Jag monterade styrelektroniken utan att ännu bygga in den i det 3d utskrivna skalet. Jag ville enkelt kunna testa servot och stegmotorerna utan att ideligen öppna skalet på apparaten. Det började nu dyka upp problem …

Problem #2

Jag kunde utan problem kompilera drivprogrammet och ladda ner det på Arduinokortet. Då jag försökte få kontakt med äggskrivaren genom programmet Inkscape dök det upp problem. Ritprogrammet Inkscape för vilket det finns en tilläggsdel för att driva äggskrivaren verkade inte över huvudtaget kunna se Arduinoprocessorn.

Problemet visade sig bero på att då jag via min dator försöker komma i kontakt med Arduinon så skickar datorn via USB en DTR signal (data terminal ready) som på UNO är kopplad till Reset d.v.s. UNOn startade om då jag öppnade kommunikationen mot UNO. I sig är detta inget problem, jag behöver bara vänta på att Arduino Uno startar om varefter linjen är öppen och bör fungera i fortsättningen.

På en linuxdator söker Inkscape efter äggskrivaren genom att öppna en serieförbindelse i taget varefter programmet väntar på att UNO startar om varefter Inkscape skriver ‘v\r\n’ d.v.s. ber om äggskrivarens versionsinformation. Om svaret kommer inom en vettig tid så vet Inkscape var äggskrivaren finns och kan börja skicka kommandon till skrivaren. Orsaken till problemet är att en Linuxdator har tillgång till en stor mängd potentiella serieportar ocxh det krävs lång tid för att beta av alla portar … så lång tid att jag gav upp 😉 . Den lösning jag fastnade för var att läsa av om Arduino Uno var kopplad till min dator. Detta kan kontrolleras med hjälp av kommandot:

lsusb

Bus 002 Device 005: ID 248a:8367
Bus 002 Device 004: ID 046d:c52b Logitech, Inc. Unifying Receiver
Bus 002 Device 060: ID 1a86:7523 QinHeng Electronics HL-340 USB-Serial adapter
Bus 002 Device 002: ID 1a40:0101 Terminus Technology Inc. Hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub

Man kan enkelt identifiera den egna anslutna USB-enheten i mitt fall Arduino Uno-kortet genom att först ge kommandot lsusb utan att kortet är anslutet varefter man ansluter kortet och ger kommandot på nytt. Den nya rad som dyker upp innehåller den kod jag vill ha. Jag har märkt ut den aktuella raden med fet stil ovan.

Kommandot listar alla USB anslutna apparater på datorn. I princip har UNOn en unik identifikationsadress. Jag modifierade Inkscapes sökprogram så att det först tittade efter min specifika Arduino UNO innan den försöker söka igenom alla andra serieportar. Äggskrivaren hittas nu snabbt och bekvämt utan problem.

Eggbot tilläggsdelen för Inkscape finns i en linuxdator i katalogen:

~/.config/inkscape/extensions

Programmet jag modifierade var: ~/.config/inkscape/extensions/ebb_serial.py .

Jag lade in mitt Arduino UNOs id i raden:

if port[2].startswith(”USB VID:PID=1A86:7523”):

Koden 1A86:7523 fick jag från lsusb-kommandot ovan.

Problemet med att Arduino UNO startar om då en yttre enhet försöker ansluta över USB kan elimineras genom att bryta en förbindelse på kretskortet om Arduinon är en äkta Arduino Uno. I mitt fall är det fråga om en kopia från vilken man har lämnat bort den här egenskapen. Nackdelen med att kapa ifrågavarande hopptråd är att programmeringen blir besvärligare. Inom ca. en sekund efter att man börjar ladda upp program till Arduinon måste man trycka på reset på Arduinokortet … reset-tryckningen har eliminerats i Arduino Uno genom att låta DTR sköta saken men då dyker det upp ovanstående problem.

Problem #3

Min ena stegmotor av typen 28BYJ-48 var defekt. Stegmotorn råkade vara kopplad till armen som styrde pennan. Något kugghjul inne i motorns kuggväxel (64 ggr nedväxling) är defekt vilket leder till att motorn stoppar i ett specifikt läge.  Jag bytte ut motorn varefter det fungerade.

Problem #4

Då jag testade stegmotorerna med en verklig bild genom Inkscape så visade det sig att motorerna gick relativt varma och de snurrade endast i en riktning. Orsaken var att instruktionerna för hur styrsignalerna fron Arduino skulle kopplas till drivkortet var felaktiga. In/ut pinnarna 2,3,4,5 styr IN1, IN2, IN3 och IN4 på stegmotorns drivkort. Det visade sig att jag för korrekt funktion måste kasta om pinnarna 3 och 4. Kopplingen till stegmotorn blev då:

pin 2 –> IN1

pin4 –> IN2

pin3 –> IN3

pin5 –> IN4

På mitsvarande sätt måste pinnarna för den andra stegmotorn kopplas:

pin 8 –> IN1 (drivkort #2)

pin10–> IN2

pin9 –> IN3

pin11–>IN4

IMGP0849_mod.JPG

Bilden visar processorkortet Artduino UNO till vänster (blått) samt två stegmotordrivkort (vita) baserade på kretsen ULN2003. Drivkorten är inget stegmotorkontrollkort utan uttryckligen en serie transistorer som kan kopplas på och av under processorkontroll. Arduinin kontrollerar bitmönstret för varje steg.  För att en stegmotor skall stega måste en serie bestämda bitmönster genereras som genererar önskade magnetfält inne i stegmotorn och bitmönstrena måste skickas till motorn i korrekt ordning och ordningsföljden byter om man vill backa …

En stegmotorkontroller behöver egentligen endast två signaler steg och riktning en kontrollkrets kan oftast också justera strömmen genom stegmotorn vilket kan användas till bl.a. att justera motorns effekt och motorns temperatur. En riktig stegmotorkontroller innehåller egen intelligens och den genererar själv korrekta bitmönster för stegning framåt och bakåt. Det finns avancerade stegmotorkontrollers som också på egen hand klarar av att accelerera och decelerera. Man kan inte abrupt ändra stegfrkvensen på en stegmotor eftersom den då kan tappa bort steg vilket blir pinsamt om maskinen som styrs inte mäter den exakta positionen … vilket i allmänhet inte görs om man använder stegmotorer.

De fyrpoliga sladdarnas ledare i mitten (på de vita korten eller på arduino men inte båda) måste kastas om för att stegmotorn skall stega i båda riktningarna.

Efter att ett antal gånger ha plockat ihop äggskrivaren och sedan isär igen började grundfunktionerna se korrekta ut. Hålen i de 3d utskrivna mekaniska bitarna tenderade att vara för små vilket krävde filande samt varmluftsblåsare. Då ett hål nästan är korrekt kan man värma komponenten varefter man pressar på den med milt våld varvid passningen blir exakt. Någon bit värmde jag så mycket att den ändrade form vilket löstes genom att skriva ut en ny bit.

Ägghållaren vid rotationsstegmotorn använder en O-ring som friktionsyta mot ägget. Vid den fria axeländan som är kullagrad finns motsvarande något mindre O-ringsyta som trycks mot ägget med hjälp av en metallfjäder. Metallfjäderns längd kan justeras med hjälp av en mellanbricka som kan skrivas ut med 3d skrivare i olika tjocklekar. Tanken  är att ägget skall vara stadigt monterat men man får inte trycka så hårt att ägget går sönder. Det är extremt viktigt att ägget inte rör sig medan äggskrivaren skriver eftersom detta dödar all precision. Mer om injustering senare i artikeln. Jag är inte övertygad om att min konstreuktion som använder O-ringar nödvändigtvis fungerar speciellt bra. Tiden får utvisa och då måste något annat system prövas.

IMGP0858_mod.JPG

Pennans drivmekanik. Den lilla stegmotorn till höger i bilden vrider pennan kring centrum av ägget. Vi ser  den vita servoarmen som används för att höja/sänka pennan. Pennan trycks mot ägget av dess egen tyngd. Vi ser o-ringen  vid rotationsmotorn som fungerar som friktionsyta för att hålla ägget på plats.  Den fjäderbelastade hållaren för äggets spetsiga ända syns nere till höger.

IMGP0857_mod.JPG

Äggskrivaren sedd från en annan vinkel. Observera att pennans lyftservo är monterat på den vertikala armen som är monterad på stegmotorn i mitten.

Arbetsprocess för att rita på ett ägg

Vi använder programmet Inkscape som är ett öppet källkodsprogram som finns att ladda ner gratis för Windows, Masc och Linux. Jag kör sedan många år endast Linux och jag har inte ens Windows installerad på mina två arbetsmaskiner. Nedanstående är inte någon ingående instruktion för hur man använder Inkscape. Det finns goda instruktioner för detta om man googlar Inkscape.

Då vi monterar ägget är det viktigt att det är möjligast väl centrerat vilket vi kan kontrollera t.ex genom att utan penna vrida ägget ett varv. Detta kan vi enkelt göra genom att skapa en Inkscape bild med storleken 4070×800. Från dokumentets vänstra kant till dokumentets högra kant dras en rät linje mitt på dokumentet. Använd View/Zoom Out så att hela bildytan kan ses då strecket ritas från kant till kant.  Om vi utan penna ”skriver ut” detta dokument så kommer ägget att vridas 360 grader runt sin axel. Genom att hålla ett lämpligt föremål som referens mot skrivarbasen kan vi kolla om avståndet mellan referensföremålet hålls konstant genom varvet eller om avståndet varierar. Om vi sder betydande variationer lönar det sig att försiktigt flytta ägget vid någondera ändan så att felet blir så litet som möjligt. Det lönar sig att experimentera.

OneTurnInkscape

En hjälpbild som består av endast ett enda streck tvärs över bilden kan användas till att kontrollera att ägget roterar precis ett varv och att det sitter korrekt monterat utan att kasta av och an då det roterar.

Under Extensions/Eggbot/ hittar vi EggBot control. Med denna kontroll kan vi kontrollera att lyftning/sänkning av penna fungerar samt skriva ut en bild i Inkscape.  Vi börjar med att skriva ut (utan penna) vår räta linje för att kontrollera att ägget är centrerat och att det roterar precis ett varv.

Vi öppnar nu ett nytt dokument antingen så att vi skapar det själv eller så att vi laddar ner ett mönster vi gillar från nätet. Vi måste nu justera bildens storlek så att den precis fyller hela ägget utan att överlappa. För min skrivare med 28BYJ-48 stegmotorer och ULM2003 styrkretsar skall dokumentets storlek sättas till ungefär 4070(bredd) x 800 (höjd). Den bild vi har läst in kan manuellt justeras till den bredd vi vill ha.

Ett test av utskrift från Inkscape visar att skrivaren i princip fungerar men det är extremt viktigt att:

  • Ägget centreras korrekt så att det inte blir några kast då det roterar
  • Pennan ställs in till lämplig höjd så att den ritar också vid ytterlägena
  • Pennan ställs i mittläge innan ritningen påbörjas. Det finns annars risk för att pennan slår i ägghållaren i ändläget vilket kan lösgöra ägget delvis så att det gungar av och an.

Provritning gav resultatet nedan vilket inte ännu är så bra.

IMGP0863.JPG

Då man tittar noga på bilden ser man att det är en springa mellan ägget och tjockändans O-ring vilket gör att denna ända av ägget abrupt hoppar av och an med intressanta resultat vid utritningen.  Jag glömde att dra fast skruven som håller pennan vilket ledde till att pennan gungade av och an beroende av pennans rörelseriktning.

Jag kommer att modifiera tjockändans fastsättning för att åtgärda felen. Jag är helt optimistisk på att skrivaren ännu kommer att fungera helt OK.

Tack till alla kända och okända på nätet som har lagt ner mycket arbete på både utveckling av programvara och hårdvara.

Den extremt billiga och samtidigt kompakta stegmotorn 28BYJ-48 är inte bra till följd av att den är utväxlad. Kugghjulen i kuggväxeln är aldrig perfekta och speciellt i en sådan här billig motor så finns det glapp d.v.s. om vi ritar en linje i en rörelseriktning och sedan byter riktning så kommer det att finnas ett obestämt område till följd av glapp. Lösningen skulle vara bättre stegmotorer som inte är utväxlade men detta betyder samtidigt att en stor del av mekaniken måste förnyas. Byter man stegmotorerna så får man dock mycket bättre exakthet vid ritandet.

Modifierad fastsättning av ägget

Jag konstaterade ovan att ägget gungade av och an i upphängningen gjord av O-ringar. Orsaken var att O-ringens dimension i förhållande till ägget blev fel. Ägget låg antagligen delvis direkt mot ändplattan vilket gjorde att det kunde glida sidlänges vilket i sin tur gjorde ritandet mycket inexakt.

Jag hittade röda flaskkorkar av gummi (se bild nedan). I finland är det här traditionella korkar som man speciellt hittar på hösten vid saftningstider. Jag köpte en påse korkar och klippte sönder en som blev en ca. 7 mm djup mjuk ägghållare. Resultatet blev mycket bra och precisionen förbättrades radikalt.

IMGP0883.JPG

Med den modifierade hållaren blir ritandet reproducerbart, räta linjer som går runt hela ägget träffar startpunkten igen efter ett varv … något som inte hände tidigare.

IMGP0882.JPG

Notera den 3d utskrivna pennhållaren. Jag skrev också ut en hållare för tre pennor i vilka pennorna kan förvaras utan kork. Den extra pennadaptern gör det mycket enklare att montera pennerna exakt och lika för alla pennor.

Planerade vidare modifiationer

Det finns fortfarande ett tydligt kännbart glapp i pennans stegmotor till följd av stegmotorns växellåda med utväxlingen 1:64 d.v.s. stegmotorn roterar 64 varv då den utgående axeln roterar ett varv.
Jag beställde en Nema 13 stegmotor som har ungefär samma dimensioner som den nu använda 28BYJ-48 men helt utan utväxling.  Då jag får stegmotorn så planerar jag att först köra den med den existerande drivkretsen och om det fungerar OK så använder jag den. Alternativet är att jag byter ULN2003 drivkortet mot en kontroller av den typ som finns i dagens 3d-skrivare. Exempelvis A4988 eller DRV8825 av vilka jag uppfattar den senare som marginellt bättre.

En stegmotor av annan typ kommer att kräva modifikation av ritarmen d.v.s. jag blir tvungen att designa en egen variantmed något annorlunda dimensioner. Fastsättningen av armen i stegmotoraxeln kommer att säkras med skruv vilket inte är falllet nu.

Beslutar jag mig för att byta ut stegmotorkontrollern så blir jag antagligen tvungen att skriva ut en modifierad bottenplatta eftersom A4988 och DRV8825 saknar skruvhål och därför kräver en annan fastsättning.

Några källor:

Byggbeskrivningen för den här presenterade Egg Painter Mini.

Den ursprungliga EggBot skrivaren.

Mjukvara till äggskrivaren.

Byggbeskrivning i PDF.

 

 

Enkel temperaturlogger

08/01/2019

Jag gjorde för en tid sedan en första preliminär mätning av UHI (Urban Heat Island) d.v.s. värmenedsmutsning av tätorter. Det är självklart att meteorologiska mätstationer som ligger nära eller i tät bebyggelse bör mäta högre temperaturer än stationer som ligger ostörda på landsbygden. De lärda tvistar idag om hur stor inverkan från UHI har på globala uppskattningar av temperaturen och uppskattningarna varierar från i princip ingen alls till några tiondels grader.

Temperaturloggerns upplösning d.v.s. de minsta temperaturskillnaderna den kan detektera är 0.1 grader C.  Sensorns precision d.v.s. felet i förhållande till en välkalibrerad temperaturgivare ligger antagligen på ca. +/- 0.5 grader C.

Jag har ingen aning om hur sensorn driver med tiden och inte heller hur linjär den i verkligheten är (om jag exempelvis vet att sensorn visar rätt vi 20 grader C, hur stort är felet vid +40?). Min gissning är dock att de relativa felen vid temperatursving på några grader är mycket små d.v.s. i storleksordningen +/- 0.1 grad C.

imgp5759

Fig. 1  Den första loggerprototypen. Det 3D-utskrivna skalet är misslyckat men bättre än ingenting. Följande version kommer ur ”ugnen” efter fyra timmar då detta skrivs. Bilden visar temperaturmätning i mitt arbetsrum kväll-natt. temperaturtoppen på nästan en grad är förorsakad av min kroppsvärme.

arbetsrum20190107

Fig. 2  Mätning av temperatur i mitt arbetsrum natten mellan den 7 och 8.1.2019. Rummet är i andra våningen /därav rätt hög temperatur) och det värms endast av datorer, skrivare etc. Det är intressant att notera hur temperaturen stiger med nästan en grad då jag sitter i rummet. En människa torde producera ungefär 200W värme vilket jag uppfattar att man kan se i mätningen. Andningsluften innehåller rätt mycket fukt vilket kan ses i den röda kurvan som är relativ luftfuktighet. Grafen skapades genom att läsa in mätvärdena i LibreOffice Calc i CSV (Comma Separated Values) format. Inläsningen krävde ingen editering av datafilen.

temp_logger_base

Fig. 3  En virtuell bild av stommen till version #2 av den nya lådan till loggern i programmet Repetier-host som jag använder för utskrift. Lådan är konstruerad i programmet openscad. Processorn och skärmen är skyddade men enkelt åtkomliga. I den första versionen kom kretskortet lite för nära lådans inre vägg vilket har åtgärdats här. Likaså modifierade jag öppningarna till USB-kontakten, SD-kortet och anslutningen för signalsladden till sensorn.  I nedre hörnet finns fack för SD-kortet och Bluetooth givaren HC-05. Nära det övre hörnet finns hjälpväggar som fungerar som kraftavlastare för sensorns sladd. Normalt brukar jag behöva tre iterationer för att designen skall bli ungefär vad jag vill ha.

tloggerboxutskrift

Fig. 4  Utskrift av den nya lådan från föregående bild. 3D-skrivaren är en Geeetech I3 kopia på motsvarande Prusa I3 skrivare. Skrivaren är byggd från en byggsats och den fungerar bra. Det krävdes dock en hel del tid, kanske två veckor,  att få allt korrekt injusterat både mekaniskt och mjukvarumässigt. Fördelen med en byggsats är dock att jag inte har några som helst hämningar att fixa eventuella problem eller göra uppgraderingar.  Det här är den bästa leksak jag har gett mig på många år.

imgp5761

Fig. 5  De i temperaturloggern ingående delarna. Från vänster Arduino Mega 2560 (blå). Därefter SD-kortadapter(ljusgrön). Bluetooth adapter HC-05 (vit) och bildskärmen sedd bakifrån (röd).  I den 3D-printade lådans skruvfästen smälts mässingsgängor vilket på sikt är mycket pålitligare än att skruva direkt i plast.

En Arduino Mega som temperaturlogger

En temperaturlogger kan byggas billigt från följande komponenter:

  • Processor Arduino Mega 2560 (ca. $10 ebay)
  • Display 480×320 pixlar innehåller ofta SD-korthållare ($5-$10 ebay). Kontrollera att displayen är kompatibel med en Arduino Mega och att den inte är gjord för en Arduino Uno (SD-kortet kan vara svårt att få att fungera om kortet är för en UNO). Det lönars ig inte att använda en Arduino Uno som logger om bildskärm används … minnet räcker inte till.
  • Bluetooth adapter HC-05 ($5 på ebay)
  • Någon typ av låda för att skydda loggern jag designade en egen låda och skrev ut den med 3D-skrivare.
  • Temperatur/fuktighetsgivare DHT22 ($3 på ebay). Det finns kombinationsgivare som också mäter lufttryck. Jag byter eventuellt senare ut DHT22 givaren mot en givare som mäter temperatur, luftfuktighet och lufttryck.
  • Ett minneskort t.ex. 8 GByte (det minsta man hittar i en normal butik)
  • Två stycken 1 kohms motstånd

Utöver ovanstående behövs lödkolv, gärna en universalvoltmätare, tröd, lödtenn o.s.v. normala hobbytillbehör för elektronikhobby.

Egenskaper hos den färdiga loggern

Loggern mäter och lagrar temperatur och luftfuktighet på ett SD minneskort. Mätta data plottas i grafisk form till bildskärmen. Mätintervallat kan ställas från ca. 1s till timmar mellan mätningarna. Bildskärmen kan skalas enligt behov d.v.s. det minsta och det största värdet p skärmen kan ställas via kommandon.

Jag kommer att lägga till funktionalitet i loggern senare. Det är enkelt att lägga till mätning av andra parametrar om det behövs. Jag har för närvarande endast en temperatursensor. Tanken är att lägga till en annan sensor så att jag kan mäta utetemperaturen nära bilens tak och ca. 10 cm högre upp. Det bör vara möjligt att få en uppfattning om hur mycket värmen i bilen stör mätningarna genom att placera två termometrar på olika höjd i luftflödet.

Kontroll/styrning av loggern

Loggern skriver ut mätningar till processorns USB serieport samt till Bluetooth modulen HC-05. Via båda dessa kanaler kan man ge kommandon åt loggern.

Bäst kontrollerar man loggern via t.ex. en mobiltelefon eller en lämplig läsplatta med bluetooth.  En lämplig App för kontroll är appen ”Bluetooth Terminal” som man hittar på Google Play. Appen är gratis (det finns säkert många andra som också fungerar). Då man kopplar på strömmen till loggern och då Bluetooth är aktiv i telefonen så kommer det att dyka upp en enhet HC-05. Om det i omgivningen finns flera HC-05 enheter så känner man igen dem på deras unika id (hexadecimal sträng av bokstäver/siffror). Då anslutningen har lyckats så kan man testa förbindelsen med kommandot ”help” som visar vilka kommandon systemet känner.

Följande kommandon finns för närvarande (kommandot ”help” ger en lista över kommandon):

COMMANDS:
help      --> This help.
start     --> Start logging
stop      --> Stop logging
sdstart   --> Re-initialize SD
sdstop    --> SD write stopped
tlog      --> Print tlog.txt
tdata     --> Print tdata.txt
ls        --> List SD files
ctlog     --> Erase tlog.txt
ctdata    --> Erase tdata.txt
!         --> Comment to tlog.txt.
logint    --> Logging interval secs.
ymin      --> Set plot ymin
ymax      --> Set plot ymax
ytic      --> Set plot ytic
replot    --> Clear screen and replot

Innan man börjar logga lönar det sig att ställa in skärmen:

ymin

Säller in y-axelns minsta värde. Om vi t.ex. vet att temperaturen ute ligger på ca. +5 och vi kommer att göra en körning som kräver några timmar så kan vi sannolikt ställa in skärmen på t.ex. 0 grader C. Commandot är då ”ymin 0” utan citationsteckn.

ymax

På motsvarande sätt ställer vi in det största värdet som ryms påskärmen t.ex. 15 grader C. Kommandor är ”ymax 15”.

logint

Kommandot ställer in intervallet mellan mätningar uttryckt i sekunder. Om vi t.ex. vill logga en gång per minut så ger vi kommandot ”logint 60”.  Intervallet är inte helt exakt. Den löpande tiden d.v.s. tidpunkten för mätningen i sekunder sedan start är relativt noggrann.

replot

Kommandot ”replot” raderar skärmen och ritar ut koordinatsystemet på nytt. Räknaren som håller reda på mätningens ordningsnummer sätts till ett (1).

start

Starta loggningen med de parametrar systemet för närvarande känner (ymin, ymax och logintervall).

stop

Stoppa loggning.  Loggning kan startas på nytt med ”start”.

sdstart

SD minneskortet initialiseras t.ex. om man har tagit ur kortet och kopierat innehållet till en dator ellr om minneskortet har bytts. Samma initialisering görs då loggern startas d.v.s. det är inte nödvändigt att ge kommandot ”sdstart” då loggern startas.

sdstop

Stoppar skrivning till SD minneskortet. Det är säkrast att ge kommandor ”sdstop” innan man tar ur SD-kortet eller innan man stänger av strömmen till loggern. Om man råkar rycka ur kortet precis då loggern skriver data till minnet så kan SD minnet förstöras. På motsvarande sätt kan kortet förstöras om man stänger av strömmen medan loggern skriver till kortet.  Risken för skador på minneskortet är naturligtvis störst om loggningsintervallet är kort. Användning av ”sdstop” förhindrar skador på SD-kortet eftersom skrivning till kortet stoppas.

tlog

Lista (skriv ut) hela loggfilen. Man kan skriva kommentarer till loggfilen genom att börja en kommentar med kommandot ”!”. Den maximala längden på en rad är satt till 50 tecken.

Exempel:

! Sommarö, start

Strängen lagras som sådan i filen tlog.txt men den förses med en tidsstämpel som motsvarar tiden för mätningarna. Man kan alltså senare direkt relatera kommentaren till specifika mätningar.

tdata

Skriv ut alla mätdata i mätfilen till både USB serieporten och till Bluetooth (HC-05). Ett sätt att överföra data till en annan apparat är att lista mätdata till serieterminalen och sedan på den kontrollerande enheten kopiera data från terminalen till en fil. Användning av tdata gör att loggningen inte behöver avbrytas och man behöver inte ta ut minneskortet.

ctlog

Radera loggfilen. Allt innehåll i loggfilen försvinner.

ctdata

Radera innehållet i datafilen. Allt innehåll i datafilen försvinner.

Koppling av termometer/luftfuktighetsmätare till loggern

Sensorns signalstift kopplas till Arduino Mega A15.

Sensorns strömmatning VCC koplas till 5V bredvid Arduinons stift 22.

Sensorns jord kopplas till Arduinons jord bredvid Arduinons stift 52.

Koppling av Bluetooth HC-05

Bluetooth VCC går till 5V på Arduino Mega (bredvid VCC för temperatursensorn). Till samma stift kopplas också VCC för SD-kortet.

Bluetooth jord GND kopplas till GND på Arduino (nära A15).

Bluetooth TXD kopplas till A13.

Bluetooth RXD kopplas via spänningsdelare t.ex. så att signalen från Arduino leds till jord via två 1 kohms motstånd kopplade i serie. Signalen till Bluetooth modulen tas ut mellan motstånden. Problemet är att HC-05 RXD är gjord för 3.3V spänningsnivå medan Arduinon använder 5V nivåer. HC-05 kan fungera en tid utan spänniungsdelare men den blir inte långlivad om den kopplas direkt.

Koppling av SD-kort

SD-korthållaren bör vara av en som har inbyggd spänningsregulator och 5V tålig. Orsaken är att SD minnet är konstruerat för endast 3.3V. Ansluter man ett oskyddat SD-kort till ett 5V system så kommer minnet att förstöras snabbt (jfr. HC-05 problemet).

SD 5V kollas till Arduino 5V (kombinerat med HC-05).

SD jord (GND) kopplas till Arduino GND (kombinerat med HC-05),

SD MOSI kopplas till Arduino Mega 2560 ICSP pin 1 (MISO)

SD MOSI kopplas till Arduino Mega 2560 ICSP pin 4 (MOSI)

SD SCK kopplas till Arduino Mega 2560 ICSP pin 3 (SCK)

SD CS kopplas till Arduino Mega 2560 dig. io pin 48

LCD skärmen

LCD skärmen är en billig kinesisk skärm designad för en Arduino UNO. Skärmen har inbyggd SD-kortläsare men problemet är att SPI gränssnittets signaler i en Arduino mega ligger påannan plats (ICSP konnektorn). Jag uppfattade det inte som mödan värt att tjuvkoppla mig runt problemet så jag använder en separat SD-kortläsare.

Problemet med många billiga kinesiska skärmar är att de är totalt ”namnlösa” och det finns ofta ingen information om vilken drivkrets de använder. Drivkretsens typ avgör vilket bibliotek jag måste använda på Arduinon för att skriva till skärmen. Vill jag has en skärm som är enkel att använda för t.ex. mätändamål så vill jag inte ha en skärm som sitter som en skäld ovanpå Arduinon och samtidigt förhindrar åmst till arduinons in/ut kontakter.

Skärmen jag har använt i det här projektet använder UTFT APIN f skärmaccess. Många kinesioska skärmar använder kontrollkretsen ILI9xxx för vilken man oftast hittar drivrutiner på nätet.

Notera att skärmen inte är nödvändig för funktionen.

Om ingen skärm finns kan programmet fortfarande köras genom att kommentera bort

#define HAVESCREEN

genom att skriva // framför definitionen d.v.s:

//#define HAVESCREEN

Programmet använder då inte alls skärmen men kontroll över programmet via Bluetooth och Arduino IDE fungerar fortfarande.

Programmet i Arduino

Programmer är skrivet i Arduinos C/C++ som är standardspråket om man använder Arduino IDE. Programmet är skrivet i en form som är typisk för en mikrokontroller där det ofta helt saknas ett underliggande operativsystem. Programmet sköter alltså själv alla funktioner och det är programmerarens sak att se till att programmet aldrig hamnar i en återvändsgränd och stoppar. Programmet är i princip en oändlig slinga som upprepas på nytt och på nytt. En cykel körs på ungefär 1/10 sekund. Vid varje varv genom programslingan kontrollerar programmet om det är tid att göra en mätning, kontrollerar om det finns något nytt kommando som borde utföras.

Om det är tid att göra en mätning så mäts temperatur och luftfuktighet och mätningens nummer, tiden sedan programstart, temperatur och luftfuktighet loggas till SD-minne. Temperaturen skrivs också ut på skärmen.

Om det finns ett kommando så utförs kommandot varefter programmet väntar på att följande varv genom slingan skall starta. Långa kommandon t.ex. en utskrift av en lång datafil kan ge tidsfel d.v.s. avståndet mellan två mätningar behöver inte vara helt exakt.

Notera att indenteringarna iprogrammet har förlorats vid inklistringen  i bloggen.

Jag kommer senare att lägga ut programmet på Github som fri programvara. Tillåtelse att använda programmet fritt ges här.

// Temperature_logger
// (c) 2019 Lars Silén
// Version 1.0
//
// Runs on an Arduino Mega 2560
//
// Using a 480×320 TFT diplay will hide the ICSP connector which caries
// the HW SPI signals. The are two options going around this problem.
// The first option is th solder the signals to the ICSP allowing us to use
// the ICSP connector with the display mounted (this option is selected here).
// The other option is to use a SW SPI library driving the SD memory card.
// This option is not selected.
//
// Any free text comin in over BT is stored including clock stamp.
// This allows simple input of location.
//
#include <Arduino.h>
#include <dhtnew.h>
#include <SPI.h>
#include <SD.h> // Support library for SD memory
#include <SoftwareSerial.h>

#define HAVESCREEN

#ifdef HAVESCREEN
//################################################
// GLUE class that implements the UTFT API
// replace UTFT include and constructor statements
// remove UTFT font declaration e.g. SmallFont
//################################################

#include <UTFTGLUE.h> //use GLUE class and constructor
UTFTGLUE myGLCD(0,A2,A1,A3,A4,A0); //all dummy args

// Declare which fonts we will be using
//extern uint8_t SmallFont[]; //GLUE defines as GFXFont ref

#define ORG_X 10
#define ORG_Y 10
#define MAX_X 470
#define MAX_Y 300

#define SCALE_MINY -10.0
#define SCALE_MAXY 30.0
#define SCALE_TICY 2.5
#define CIRCLE 0
#define CIRCLE_SIZ 2
#define SQUARE 1
#define TRIANGLE 2
#define LINES 1
float miny = SCALE_MINY;
float maxy = SCALE_MAXY;
float ytic = SCALE_TICY;

#endif

#define SDavailable // We have access to a sd memory
#define REPORTINTERVAL 60*10 // For testing reporting is done ar one minute interval.
int reportinterval=REPORTINTERVAL;

// ****************************************************
// Thermo and humidity sensor
// ****************************************************

#define connectedTSens1 true
#define connectedTSens2 false

// Looks like digital IO 22-53 don’t work properly.
// Use PWM pins or A-series pins.
#define DHT22Sens1 A15
#define DHT22Sens2 A12

DHTNEW mySensor1(DHT22Sens1);
#ifdef DHT22Sens2
DHTNEW mySensor2(DHT22Sens2);
#endif

// ****************************************************
// SD-memory support
// ****************************************************
// MISO, MOSI and SCLK in ICSP header.
// CD on pin 53.

Sd2Card card;
SdVolume volume;
SdFile root;
int SDstop = false;

int measured = false;
float Temperature = -999.0;
float Humidity = -999.0;
unsigned long timeSecs = 0; // Updated at 1s intervals using interrupts this is the main clock
unsigned long timeSinceStart=0; // Time in seconds since start
unsigned long stepper_rotate=0; // How often should we rotate the tower by one movement step (one turn of the motor).

int reportCnt = 0;
boolean stringComplete = false;
String inputString = ””; // a String to hold incoming sewrial needs initialization in setup().
String sysString = ””; // Handles writing/reading data
SoftwareSerial BTSerial(A13, A14); // RX, TX

unsigned long t;
int counter=0;
int shortcnt=REPORTINTERVAL;
int isRunning = false;
unsigned long tOffs;

void setup() {
// Serial interface towards supervising computer at 9600 baud
Serial.begin(9600);
pinMode(A14,OUTPUT);
BTSerial.begin(9600);

// Set up the temperature/humidity sensor type DHT2x (AOSONG AM230x)
//pinMode(50,INPUT);
if(connectedTSens1){
mySensor1.read();
}
#ifdef DHT22Sens2
if(connectedTSens2){
mySensor2.read();
}
#endif
Serial.println(”Started the Temperature/humidity sensor”);
BTSerial.println(”Started the Temperature/humidity sensor”);

// Start the system
inputString.reserve(50);
sysString.reserve(50);

// ***********************************************
// Setup SD-memory
// ***********************************************
#define SDCS 48
//pinMode(SDCS,OUTPUT);
if (!card.init(SPI_HALF_SPEED, SDCS)) {
Serial.println(”initialization failed. Things to check:”);
Serial.println(”* is a card inserted?”);
Serial.println(”* is your wiring correct?”);
Serial.println(”* did you change the chipSelect pin to match your shield or module?”);

BTSerial.println(”initialization failed. Things to check:”);
BTSerial.println(”* is a card inserted?”);
BTSerial.println(”* is your wiring correct?”);
BTSerial.println(”* did you change the chipSelect pin to match your shield or module?”);
return;
} else {
Serial.println(”Wiring is correct and a card is present.”);
BTSerial.println(”Wiring is correct and a card is present.”);
}
SD.begin(SDCS);
if (!volume.init(card)) {
Serial.println(”Could not find FAT16/FAT32 partition.\nMake sure you’ve formatted the card”);
BTSerial.println(”Could not find FAT16/FAT32 partition.\nMake sure you’ve formatted the card”);
return;
}
if(SDstop==true){
Serial.println(”SD stopped use SDstart”);
BTSerial.println(”SD stopped use SDstart”);
}

#ifdef HAVESCREEN
// ***********************************
// Setup the LCD
// ***********************************
Serial.println(”Trying to init LCD”);
BTSerial.println(”Trying to init LCD”);
myGLCD.InitLCD();
myGLCD.setFont(SmallFont);
#endif
}

float get_temperature(int sensorNo){
switch(sensorNo){
case 1: if(connectedTSens1){
Serial.println(”mySensor1.temperature”);
BTSerial.println(”mySensor1.temperature”);
return mySensor1.temperature;
} else {
return -999.0;
}
break;
case 2: if(connectedTSens2){
Serial.println(”mySensor2.temperature”);
return mySensor2.temperature;
} else {
Serial.print(”Not connected connectedTSens2=”);Serial.println(connectedTSens2);
return -999.0;
}
break;
}
Serial.println(”Fell through no such sensor number”);
BTSerial.println(”Fell through no such sensor number”);
return -999.0;
}

unsigned long get_time_since_start(){
// Get time in seconds since start
return timeSinceStart;
}

void ck_serial(){
// ***********************************
// Handle incoming serial data
// ***********************************
// CheclUSB serial typically Arduino Serial Monitor
while (Serial.available()>0) {
// get the new byte:
char inChar = (char)Serial.read();
inputString += inChar;
// if the incoming character is a newline the command is complete
// set a flag so the main loop can
// do something about it:
if (inChar == ‘\n’) {
stringComplete = true;
//Serial.println(”Got CR”);
}
}
// Check Bluetooth connection to phone/pad
while (BTSerial.available()>0) {
// get the new byte:
char inChar = (char)BTSerial.read();
inputString += inChar;
// if the incoming character is a newline the command is come,
// set a flag so the main loop can
// do something about it:
if (inChar == ‘\n’) {
stringComplete = true;
//Serial.println(”Got CR”);
}
}
serial_cmd();
}

void writeToLog(String ipStr){
if(SDstop==true) return;

File wrf=SD.open(”tlog.txt”,FILE_WRITE);
wrf.print(counter);
wrf.print(”,”);
wrf.println(ipStr);
wrf.close();
}

void serial_cmd(){
int n=0;
float h;
float energy=0;
float price=0;
// Some very basic commands
if(stringComplete==true){
// Ensure that case doesn’t matter when entering commands.
inputString.toLowerCase();
if(inputString.startsWith(String(”#”))){
// Handle comments
// Allows us to use scripts on the PC to set parameters on the controller.
Serial.print(”# ”);
Serial.println(”inputString”);
BTSerial.print(”# ”);
BTSerial.println(”inputString”);
stringComplete=false;
return;
}
// Restart use of the SD memory card after a SD stop.
if(inputString.startsWith(String(”sdstart”))){
Serial.print(”# command=sdstart ”);
BTSerial.print(”# command=sdstart ”);
// Re-initialize the card. The card may have been replaced.
if (!card.init(SPI_HALF_SPEED, SDCS)) {
Serial.println(”initialization failed. Things to check:”);
Serial.println(”* is a card inserted?”);
Serial.println(”* is your wiring correct?”);
Serial.println(”* did you change the chipSelect pin to match your shield or module?”);
BTSerial.println(”initialization failed. Things to check:”);
BTSerial.println(”* is a card inserted?”);
BTSerial.println(”* is your wiring correct?”);
BTSerial.println(”* did you change the chipSelect pin to match your shield or module?”);
inputString=””;
return;
} else {
Serial.println(”Wiring is correct and a card is present.”);
BTSerial.println(”Wiring is correct and a card is present.”);
}
SD.begin(SDCS);
if (!volume.init(card)) {
Serial.println(”Could not find FAT16/FAT32 partition.\nMake sure you’ve formatted the card”);
BTSerial.println(”Could not find FAT16/FAT32 partition.\nMake sure you’ve formatted the card”);
return;
}
SDstop = false;
inputString=””;
stringComplete=false;
return;
}
// Secure removal of the SD memory card.
if(inputString.startsWith(String(”sdstop”))){
Serial.print(”# command=sdstop”);
BTSerial.print(”# command=sdstart ”);
SDstop=true;
inputString=””;
stringComplete=false;
return;
}
// Start logging
if(inputString.startsWith(String(”start”))){
Serial.println(”# command=start”);
BTSerial.println(”# command=start”);
isRunning=true;
tOffs=millis()/1000;
stringComplete=false;
inputString=””;
return;
}
// Stop logging
if(inputString.startsWith(String(”stop”))){
Serial.println(”# command=stop”);
BTSerial.println(”# command=stop”);
isRunning=false;
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”ymin”))){
Serial.print(”# command=ymin value=”);
BTSerial.print(”# command=ymin value=”);
#ifdef HAVESCREEN
miny=inputString.substring(4).toFloat();
Serial.println(miny);
BTSerial.println(miny);
#else
Serial.println(”Error: No screen defined”);
BTSerial.println(”Error: No screen defined”);
#endif
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”ymax”))){
Serial.print(”# command=ymax value=”);
BTSerial.print(”# command=ymax value=”);
#ifdef HAVESCREEN
maxy=inputString.substring(4).toFloat();
Serial.println(maxy);
BTSerial.println(maxy);
#else
Serial.println(”Error: No screen defined”);
BTSerial.println(”Error: No screen defined”);
#endif
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”ytic”))){
Serial.print(”# command=ytic value=”);
BTSerial.print(”# command=ytic value=”);
#ifdef HAVESCREEN
ytic=inputString.substring(4).toFloat();
Serial.println(ytic);
BTSerial.println(ytic);
#else
Serial.println(”Error: No screen defined”);
BTSerial.println(”Error: No screen defined”);
#endif
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”logint”))){
Serial.print(”# command=logint value=”);
BTSerial.print(”# command=logint value=”);
reportinterval=inputString.substring(6).toInt();
Serial.println(reportinterval);
BTSerial.println(reportinterval);
reportinterval=10*reportinterval;
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”replot”))){
Serial.println(”# command=replot”);
BTSerial.println(”# command=replot”);
#ifdef HAVESCREEN
setup_graph_screen();
#else
Serial.println(”Error: No screen defined”);
BTSerial.println(”Error: No screen defined”);
#endif
counter=1;
stringComplete=false;
inputString=””;
return;
}
if(inputString.startsWith(String(”tlog”))){
Serial.println(”# command=tlog”);
BTSerial.println(”# command=tlog”);
#ifdef SDavailable
dumpTLog();
#else
Serial.println(”SD card not available”);
BTSerial.println(”SD card not available”);
#endif
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”tdata”))){
Serial.println(”# command=tdata”);
BTSerial.println(”# command=tdata”);
#ifdef SDavailable
dumpTData();
#else
Serial.println(”SD card not available”);
BTSerial.println(”SD card not available”);
//BTSerial.println(”SD card not available”);
#endif
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”ls”))){
Serial.print(”# command=ls: ”);
BTSerial.print(”# command=ls: ”);
File root = SD.open(”/”);
printDirectory(root,0);
root.close();
//root.openRoot(volume);
// list all files in the card with date and size
//root.ls(LS_R | LS_DATE | LS_SIZE);
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”ctlog”))){
Serial.print(”# command=ctlog”);
BTSerial.print(”# command=ctlog”);
clearTLog();
Serial.println(”tlog.txt cleared (erased)”);
BTSerial.println(”tlog.txt cleared (erased)”);
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”!”))){
Serial.print(”# command=”);
Serial.println(inputString);
BTSerial.print(”# command=”);
BTSerial.println(inputString);
#ifndef SDavailable
return;
#endif
t = millis()/1000;

File wrf=SD.open(”tlog.txt”,FILE_WRITE);
wrf.print(counter);wrf.print(”,”);
wrf.print(t);wrf.print(”, ”);
wrf.println(inputString);
wrf.close();
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”ctlog”))){
Serial.print(”# command=ctlog”);
BTSerial.println(”# command=ctlog”);
clearTLog();
Serial.println(”tlog.txt file erased”);
BTSerial.println(”tlog.txt file erased”);
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”ctdata”))){
Serial.println(”# command=ctdata”);
clearTData();
Serial.println(”tdata.txt file erased”);
BTSerial.println(”tdata.txt file erased”);
inputString = ””;
stringComplete=false;
return;
}
if(inputString.startsWith(String(”help”))){
Serial.println(””);
Serial.println(”COMMANDS:”);
Serial.println(”help –> This help.”);
Serial.println(”start –> Start logging”);
Serial.println(”stop –> Stop logging”);
Serial.println(”sdstart –> Re-initialize SD”);
Serial.println(”sdstop –> SD write stopped”);
Serial.println(”tlog –> Print tlog.txt”);
Serial.println(”tdata –> Print tdata.txt”);
Serial.println(”ls –> List SD files”);
Serial.println(”ctlog –> Erase tlog.txt”);
Serial.println(”ctdata –> Erase tdata.txt”);
Serial.println(”! –> Comment to tlog.txt.”);
Serial.println(”logint –> Logging interval secs.”);
Serial.println(”ymin –> Set plot ymin”);
Serial.println(”ymax –> Set plot ymax”);
Serial.println(”ytic –> Set plot ytic”);
Serial.println(”replot –> Clear screen and replot”);
Serial.println(””);

BTSerial.println(”COMMANDS:”);
BTSerial.println(”help –> This help.”);
BTSerial.println(”start –> Start logging”);
BTSerial.println(”stop –> Stop logging”);
BTSerial.println(”sdstart –> Re-initialize SD”);
BTSerial.println(”sdstop –> SD write stopped”);
BTSerial.println(”tlog –> Print tlog.txt”);
BTSerial.println(”tdata –> Print tdata.txt”);
BTSerial.println(”ls –> List SD files”);
BTSerial.println(”ctlog –> Erase tlog.txt”);
BTSerial.println(”ctdata –> Erase tdata.txt”);
BTSerial.println(”! –> Comment to tlog.txt.”);
BTSerial.println(”logint –> Log interval secs.”);
BTSerial.println(”ymin –> Set plot ymin”);
BTSerial.println(”ymax –> Set plot ymax”);
BTSerial.println(”ytic –> Set plot ytic”);
BTSerial.println(”replot –> Clear screen and replot”);
inputString = ””;
stringComplete=false;
return;
}
// Any comman that isn’t recognized is assumed to be a comme that is loged
// into the tlog.txt logfile.
Serial.print(”inputString”);
Serial.println(inputString);
writeToLog(inputString);
inputString = ””;
stringComplete=false;
return;
}
return; // Never reached
}

void report_serial(){
// Write as comma separated values for easy import to a spread sheet program

Serial.print(”Time,”); Serial.print(t); Serial.print(”, ”);
BTSerial.print(”Time,”); BTSerial.print((timeSecs/3600.0)); BTSerial.print(”, ”);
if(connectedTSens1){
Serial.print(”Temp1, ”); Serial.print(mySensor1.temperature); Serial.print(”, ”);
Serial.print(”Hum1, ”); Serial.print(mySensor1.humidity); Serial.print(”\n”);
BTSerial.print(”Temp1, ”); Serial.print(mySensor1.temperature); Serial.print(”, ”);
BTSerial.print(”Hum1, ”); Serial.print(mySensor1.humidity); Serial.print(”\n”);
}
//if(connectedTSens2){
// Serial.print(”Temp2, ”); Serial.print(mySensor2.temperature); Serial.print(”, ”);
// Serial.print(”Hum2, ”); Serial.print(mySensor2.humidity); Serial.print(”\n”);
//}
}

// ********************************************
// SD related functions
// ********************************************

void printDirectory(File dir, int numTabs) {
while (true) {

File entry = dir.openNextFile();
if (! entry) {
// no more files
break;
}
for (uint8_t i = 0; i < numTabs; i++) {
// Repaced ‘\t’ with ‘ ‘ to save screen space
Serial.print(‘ ‘);
BTSerial.print(‘ ‘);
}
Serial.print(entry.name());
if (entry.isDirectory()) {
Serial.println(”/”);
BTSerial.println(”/”);
printDirectory(entry, numTabs + 1);
} else {
// files have sizes, directories do not
Serial.print(”\t\t”);
Serial.println(entry.size(), DEC);
BTSerial.print(”\t\t”);
BTSerial.println(entry.size(), DEC);
}
entry.close();
}
}

void dumpTLog(){
// Dump the logfile to the external computer
char c;
#ifndef SDavailable
Serial.println(”Error: No SD memory available”);
BTSerial.println(”Error: No SD memory available”);
return;
#endif
File rdf = SD.open(”tlog.txt”,FILE_READ);
if (rdf){
while (rdf.available()) {
c=rdf.read();
Serial.write(c);
BTSerial.write(c);
}
rdf.close();
} else {
Serial.println(”Error: Could not open tlog.txt”);
BTSerial.println(”Error: Could not open tlog.txt”);
}
}

void clearTLog(){
#ifndef SDavailable
Serial.println(”Error: No SD memory available”);
BTSerial.println(”Error: No SD memory available”);
return;
#endif
SD.remove(”tlog.txt”);
}

void dumpTData(){
// Dump the logfile to the external computer
char c;
#ifndef SDavailable
Serial.println(”Error: No SD memory available”);
BTSerial.println(”Error: No SD memory available”);
return;
#endif
File rdf = SD.open(”tdata.txt”,FILE_READ);
if (rdf){
while (rdf.available()) {
c=rdf.read();
Serial.write(c);
BTSerial.write(c);
}
rdf.close();
} else {
Serial.println(”Error: Could not open usrlog.txt”);
BTSerial.println(”Error: Could not open usrlog.txt”);
}
}

void clearTData(){
#ifndef SDavailable
Serial.println(”Error: No SD memory available”);
BTSerial.println(”Error: No SD memory available”);
return;
#endif
SD.remove(”tdata.txt”);
}

#ifdef HAVESCREEN
int cy(int y){
// Convert y into screen coordinate sy)
int v=0;
v = MAX_Y – y;
if(v<0){
v = ORG_Y;
return v;
} else if(v>MAX_Y){
v= MAX_Y;
return v;
}
return v;
}

int cx(int x){
// Dummy conversion of x-coordinate to screen coordinate
int v=0;
v = x+ORG_X;
if(v<ORG_X){
return ORG_X;
} else if(v>MAX_X){
return MAX_X;
}
return v;
}

void draw_axisX(){
// Draw x-axis
myGLCD.drawLine(cx(0), cy(0), cx(MAX_X), cy(0));
}

void draw_axisY(){
// Draw y-axis
myGLCD.drawLine(cx(0), cy(0), cx(0), cy(MAX_Y-10));
}

int cnvYfloatToInt(float y){
int intY;
//intY = MAX_Y*(y-SCALE_MINY)/(SCALE_MAXY-SCALE_MINY);
intY = MAX_Y*(y-miny)/(maxy-miny);
//Serial.print(”y=”);
//Serial.println(y);
//Serial.print(”Conv intY=”);
//Serial.println(intY);
return intY;
}

void ticX(int dx){
// Starts from x=0
// Draw x-ticks
myGLCD.setBackColor(0, 0, 0);
for (int i=0; i<460; i+=dx){
myGLCD.drawLine(cx(i), cy(0), cx(i), cy(10));
sysString=String(i);
myGLCD.print(sysString, i+5, cy(15));
}
}

void ticY(float dy,int ltype){
float ypos;
int intY;
int i;
//for (int i=0; i<MAX_Y; i+=dy) myGLCD.drawLine(cx(0), cy(i),cx(10), cy(i));
ypos = miny;
while(ypos < maxy){
intY = cnvYfloatToInt(ypos);
myGLCD.drawLine(cx(0), cy(intY),cx(10), cy(intY));
if(ltype==LINES){
myGLCD.setBackColor(0, 0, 0);
for(i=10; i<469; i=i+10){
myGLCD.drawLine(cx(i), cy(intY),cx(i+3), cy(intY));
}
}
sysString=String(ypos);
myGLCD.print(sysString, 15, cy(intY+9));
ypos = ypos + dy;
}
}

void setup_graph_screen(){
myGLCD.clrScr();
myGLCD.setColor(255, 0, 0);
myGLCD.print(”* Temperature logger V1.0 *”, 30, 20);
// Draw a background
myGLCD.setColor(255, 0, 0);
myGLCD.fillRect(0, 0, 479, 13);
myGLCD.setColor(64, 64, 64);
myGLCD.fillRect(0, 306, 479, 319);
myGLCD.setColor(255, 255, 255);
myGLCD.setBackColor(255, 0, 0);
draw_axisX();
ticX(60);
draw_axisY();
ticY(ytic,LINES);
}

void plot_point(int x, float flY, int symb){
int y;
//Serial.print(”Initial float Y=”);
//Serial.println(flY);
y = cnvYfloatToInt(flY);
//Serial.print(”Converted intY=”);
//Serial.println(y);
switch(symb){
case CIRCLE: myGLCD.drawCircle(cx(x), cy(y), CIRCLE_SIZ);
break;
}
}
#endif

void store_data_SD(){
if(SDstop==true) return;
File wrf=SD.open(”tdata.txt”,FILE_WRITE);
wrf.print(t-tOffs);
wrf.print(”,”);
wrf.print(counter);
wrf.print(”, T , ”);
wrf.print(mySensor1.temperature);
wrf.print(”, h , ”);
wrf.println(mySensor1.humidity);
wrf.close();
}

// ********************************************************************************************
// MAIN PROGRAM
// We run, very roughly one loop per second.
// Notice that variables defined within the loop are local to loop() and they
// are initialized when a new loop starts. To preserve data between loops variables have
// to be declared outside the loop().
// ********************************************************************************************

void loop() {
// ******************************************************
// Main loop for actual work
// ******************************************************
ck_serial();

if (counter==0){
#ifdef HAVESCREEN
setup_graph_screen();
#endif
counter=1;
}
shortcnt–;
if((shortcnt<=0) & isRunning==true){
mySensor1.read(); // Read Temperature and Humidity sensor #1
t = millis()/1000; // Seconds since start
Serial.print(t-tOffs);
Serial.print(” , ”);
Serial.print(counter);
Serial.print(” , T , ”);
Serial.print(mySensor1.temperature);
Serial.print(” ,h, ”);
Serial.println(mySensor1.humidity);
BTSerial.print(t-tOffs);
BTSerial.print(”,”);
BTSerial.print(counter);
BTSerial.print(” , T , ”);
BTSerial.print(mySensor1.temperature);
BTSerial.print(” , h , ”);
BTSerial.println(mySensor1.humidity);
shortcnt = reportinterval;
#ifdef HAVESCREEN
plot_point(counter,mySensor1.temperature,CIRCLE);
#endif
store_data_SD();
counter++;
}

delay(100);
}

Historisk datateknik

24/12/2018

Mina första kontakter med datateknik var på 1960-talet då min far lånade hem en Olivetti Programma 101 ”dator” eller kanske bättre programmerbar (bords) räknemaskin. Datorn var stor som en modern resväska men den var programmerbar i 100 steg dock så att varje variabel förbrukade ett programsteg.
Olivetti_programma_101

Pappa programmerade maskinen till att bl.a. skriva ut lyftdata för olika vingprofiler. Ungdomarna i familjen (däribland jag) var intresserade av modellflyg.

Följande steg för mig var Science of Cambridge Mk14  som var en 8-bitars dator med 256 minnesplatser. Program kunde lagras på kassettband men man måste alltid börja med att knacka in ett laddprogram i hexadecimal form. Jag hade inbillat mig att jag skulle ha kunnat expandera maskinen till att bli den programmerbara funktionsräknare jag egentligen önskade mig. Resultatet blev att jag lärde mig programmering i assembler men så att jag själv översatte koden till binär (hexadecimal) form.

Några år senare jobbade jag i Tavastehus på ”Ammattikoulujen Opettajaopisto” som fungerade i anslutning till en teknisk skola. Man hade en Eclipse minidator som tidsdelat användes bl.a. till undervisning i programmering (Fortran).  Min uppgift var. bl.a. att skriva enkla undervisningsprogram. Jag märkte snabbt att det lönade sig att använda en fristående mikrodator som körde CP/M operativsystemet i stället för att dela minidatorn. Eclipse minidatorn hade en kapacitet som var en bråkdel (kanske 1/1000) av kapaciteten hos en modern PC och samma maskin användes samtidigt av tjugo elever till att kompilera Fortran. Resultatet var naturligtvis att Eclipsen under skoltid var fruktansvärt trög … man kunde vänta i flera sekunder på att en knapptryckning skulle noteras. Den lilla CP/M maskinen hade endast en användare (jag) så den var underbar att använda. En persondator innan den egentliga persondatorn (IBM PC) ens var uppfunnen.

Jag råkade för en kort tid sedan på nätet stöta på en artikel om emulering av CP/M maskiner med hjälp av Arduino processorer. Den mest extrema vartianten jag har sett är då en Arduino Nano, dock med stöd av extern hårdvara, har använts till att köra CP/M. En enklare variant, då processorn är mycket mera kraftfull, är att emulera CP/M med hjälp av en Arduino Due som är ett ARM-baserat processorkort som antagligen är några hundra gånger snabbare än den ursprungliga Intel 8080 processorn.

Arduino_Due_CPM_system.png

Mitt emulerade CP/M system med hårdskiva till höger. Skivenheten är ett 4G SD-kort som är så litet att man inte hittar sådana i butikerna längre. På kortet finns katalogerna A, B, D, D, E som motsvarar forntidens 8 tums skivminnen. Skillnaden är att mina skivstationer A, B  … har en nästan obegränsad kapacitet. De första 8 tums ”floppyna” hade en kapacitet på kanske 150 000 tecken. Min extrema SD-hårdskiva har en kapacitet som är 25000 gånger större än en forntida 8-tums floppyenhet. En floppy hade en så liten kapacitet att man normalt körde t.ex. en kompilator från en skiva och hade texteditorn och programmet som kompilerades på en annan skiva.

Man kan köra CP/M i normal hastighet på kortet. Processorn har så mycket RAM minne att det finns nästan 64kByte minne ledigt för program … ett sagolikt stort minne!  Maskinen är helt användbar bl.a. till textbehandling (Wordstar) trots att en modern PC har ett minne som är ungefär 125 000 ggr större!

CP_m_2.2_Arduino_Due

Bilden ovan visar hur jag kör CP/M i textterminal GtkTerm. Det dök egentligen upp endast två poblem.

Det första problemet var hur det var tänkt att det simulerade skivsystemet med skivenheterna A:, B:, C: osv skulle konfigureras för att maskinen skulle hitta systemfilen och starta. Jag blev tvungen att lägga till några kommentarer tll emulatorns uppstartsrutin för att se varför systemet inte först ville starta., därför finns kommentaren ”Looking for: CPM22.BIN. Jag visste helt enkelt inte om problemet var SD-kortet eller platsen där systemet var lagrat i förhållande till övriga CP/M rutiner.

Det andra problemet var trivialare … att hitta ett lämpligt terminalemulatorprogram för linux som skulle gå att använda direkt utan läsande av någon bruksanvisning.   Att hitta ett terminalemulatorprogram var egentligen det storsta problemet med att få igång CP/M systemet på riktigt. Arduinons utvecklingsmiljö har något de kallar ”Serial Monitor” d.v.s ett enkelt program som kan  skicka kommandon till Arduinon och skriva ut den text som kommer tillbaka från kortet. Monitorn visade nog att jag hade fått CP/M startat men det gick inte att i praktiken köra något eftersom monitorn inte motsvarade en riktig gammaldags intelligent terminal. För detta ändamål behövs det en terminalemulator som klarar av att tolka bl.a. kontrolltecken som CP/M systemet skickar till terminalen.

Det behövdes en aning debuggning av SD-kortet som används i stället för skivminne, därav min kommentar vid uppstart ”Looking for: CPM22.bin”.

MBASIC_1985-1986.png

Bilden visar hur systemet kör Microsoft MBASIC från 1986 i en CP/M emulator som körs i en Arduino Due. Arduino Due har följande specifikationer:

Processor 32-bitars ARM.

Flash programminne 512 kB

RAM-minne 96 kB

Klockfrekvens 84 MHz

Detta kan jämföras med orginalets processor Intel 8080 som körde på 2 MHz men så att en instruktion typiskt behövde mellan 4 och 8 klockcykler. Arduinon kör alltså ungefär 100 ggr snabbare vilket gör att den klarar av att emulera en Intel 8080 processor i full hastighet.

Det är intressant att jämföra CP/M maskinen ovan med kapaciteten hos en typisk persondator av idag.

Programminne RAM är 25 000-50 000 ggr större än hos en CP/M maskin.

Skivutrymmet på en modern dator är 20 000 000 ggr större än hos ett typiskt CP/M system med en skivenhet.

Processorn är idag ungefär 4000 ggr snabbare med en ordlängd d.v.s. storleken på de datapaket datorn behandlar är 8 ggr större.

 

UHI (Urban heat Island)

15/12/2018

Man har i debatten om den katastrofala globala uppvärmningen, som sedan blev klimatförändringen då väldigt lite synligt inträffade :), också diskuterat inverkan från mänsklig uppvärmning av mätstationerna. Det är lätt att förstå resonemanget bakom UHI d.v.s. värmenedsmutsning av mätstationerna. Om en station då den byggs placeras i orörd natur men där det senare byggs en stad kring mätstationen så verkar det naturligt att uppvärmning av hus, trafik etc. bör värma omgivningen kring termometern som således bör visa en för hög temperatur jämfört med en tvillingtermometer som antas ha placerats ut på en motsvarande plats men som besparats från kringliggande bebyggelse.

Det är självklart att en viss uppvärmning bör gå att observera. Att mäta hur stort UHI felet är, är däremot mycket svårt eftersom felet är beroende av vindriktning, vindstyrka, den omgivande bebyggelsens typ etc. I allmänhet försöker man uppskatta UHI felet som funktion av t.ex. den närliggande stadens storlek jämfört med någon möjligast ostörd station inom några tiotals kilometer från den värmenedsmittade stationen. Notera att om det finns stora vattenytor i närheten av en termometer så kommer vattnet att påverka temperaturen nära stranden. Inverkan från havet går antagligen att se i figuren nedan.

En enkel mätning av UHI i Helsingfors

Jag satte ihop en enkel datalogger baserad på en Arduino Mega 2560 processor. Till processorn anslöt jag ett SD-minneskort och realtidsklocka (RTC).  Programmet skrevs så att data insamlas med ca. en minuts mellanrum under hela experimentet. För varje mätning loggades tid, temperatur och luftfuktighet.

En termometer av typen AM2302 som mäter luftfuktighet och temperatur anslöts till Arduinoprocessorn. Uppgifter på nätet och de angivna tekniska data säger att termometerns precision ligger på ca. +/-0.5 grader, repeterbarheten är ca.  +/- 0.3 grader. Sensord upplösning d.v.s. den minsta skillnaden mellan två mätvärden är 0.1 ⁰C respektive 0.1 % relativ leftfuktighet. I ett ostört slutet rum ligger brusnivån klart under dessa värden. Okalibrerad så är sensorns absoluta noggrannhet antagligen på ovan angivna +/- 0.5 C medan däremot relativa förändringar går att avläsa med bättre precision.

Loggningen startades då jag körde iväg från Mankholmsvägen på Sommarö i Esbo mot Herlsingfors. Avståndet från Mankholmsvägen till Helsingfors absoluta centrum är ca. 25 km (kortare fågelvägen, se bild). Starten gick kl. 21.18. Vindriktningen var enligt meteorologen ungefär 60 grader och vindhastigheten var 3 m/s.

De första mätvärdena är antagligen något för höga eftersom jag inte väntade på att sensorn skulle svalna innan jag startade. Sensorn är liten till formatet och den har en liten termisk massa.  De sista mätvärdena är antagligen representativa också för starten. Sensorn mätte temperaturen ca. 5 cm upp från biltaket  så att sensorkablen som är relativt styv samtidigt fungerade som kort mast.

Rutten ses i bild ett.

UHI_rutt.png

Temperaturmätning över hela den körda sträckan gav följande resultat:

UHI_measured

Avståndet mellan mätningarna är ungefär en minut. Exakt tid har loggats men den är ointressant. Vid start från Mankholmsvägen torde temperaturen ha varit ungefär -3.5 grader. Jag lät inte termometerns temperatur stabiliseras innan start vilket betyder att den var något varm vid starten. Kurvan visar avvikelse från hela körningens medelvärde d.v.s. en temperaturanomali. . Hela körningens medeltemperatur var -3.92 grader C. Färden går först mot nordväst (Sökö) och kallast är det vid Sököviken. Sököviken är en förort med uppskattningsvis 15 000 invånare.

Färden går nu mot Helsingfors på motorväg och temperaturen stiger jämnt. Vid mätning nummer 23 har vi nått Gräsviken där motorvägen tar slut. Vid mätning nummer 27 har vi nått Helsingfors absoluta centrum med våningshus på alla sidor (Järnvägsstationen, det man i Sverige skulle kalla centralen). Temperaturen har nått ett toppvärde.

Förden går vidare längs Kajsaniemigatan över ”Långa bron” mot Berghäll.  Vi passerar Kajsaniemiparkens ena sida vid mätning 35. Vid mätning 41 är vi tillbaka vid Kajsaniemi efter att ha kört tillbaka över långa bron. Jag kör nu på en liten väg runt Kajsaniemiparken i vars ungefärliga mitt Meteorologiska Institutionen har en mätstation med kontinuerliga temperaturmätdata från 1800-talet. Vid 22-tiden, då jag kör genom parken, anger stationen temperaturen till ca. -4.8 grader (min mätning kanske 100 meter från stationen visar -4.3 grader vilket verkar plausibelt eftersom jag kör längs en strand).

Vid mätning nummer 44 kör jag ut från Kajsaniemiparken precis vid Järnvägsstationen d.v.s. jäg är igen vid stadens absoluta centrum och temperaturen stiger snabbt.

Vid mätning nummer 50 är jag tillbaka vid Gräsviken nära uppfarten till motorvägen ”Västerleden”. Vid mätning 63 är jag tillbaka  vid Esboviken och färden gär därefter vidare tillbaka ut mot skärgården. Vid mätning 72 har jag parkerat och stängt av loggningen.

Editering 16.12.2018:

Nedan visas luftfuktigheten under körningen. Här gäller igen att jag borde ha låtit sensorn stabiliseras under någon timme innan körningen. De första mätvärdena borde vara sannolikt betydligt högre. Fuktighetsmätningen tyder på att UHI temperaturmätningen är realistisk eftersom varm luft kan innehålla mera fuktighet. Om luftens absoluta mängd vattenånga antas vara konstant så bör en högre temperatur ses som lägre relativ luftfuktighet vilket också är fallet här.  Luftfuktighetsmätningen visar att temperaturstegringen i centreala Helsingfors är verklig och inte endast en följd av t.ex. varierende körhastighet och värmeläckage från vilen till sensorn.

Notera att jag visar luftfuktigheten i relation till mätseriens medeltal d.v.s. luftfuktighetsanomalin. Den relativa luftfuktigheten var under körningen i medeltal ungerfär 73% relativ luftfuktighet.

UHI20181215_humidity

Jag har planerat att skriva ut en hållare för två stycken sensorer, en på avståndet 5 cm från bilens tak och den andra på 10 cm avstånd från biltaket. Användning av dubbel sensor bör visa hur stort felet (UHI störning) från min egen bil är.

Slutsatser

Egentligen kan inga slutsatser ännu dras. Vindriktningen var sådan att det ligger stora bostadsområden i riktning ONO. Det är egentligen förvånande att det gick att se något som sannolikt kan vara UHI. En första gissning är att UHI ligger på kanske en halv grad (0.5 grader C) under dagens förhållanden.

Vidare planer

Jag planerar att göra samma körning vid trafiksvag tid vid olika vindriktningar för att få en bild av hur vädersituationen inverkar. Jag har också planer på att köra ner till Porkala udd som ligger västerut från Helsingfors (som också ligger på en udde). Tanken är att se hur havet inverkar på temperaturen då Porkala är mycket glest bebyggt. En kombinerad körning till både Helsingfors och Porkala under samma kväll (2-3 timmar) kunde vara en intressant jämförelse.

Havens uppvärmning stigande havsyta

27/11/2018

Det här är ett försök att uppskatta hur stor den termiska havsytehöjningen är utgående från kända bakgrundsdata. Kontakta mig gärna om du hittar grova felaktigheter. Notera att det här är en överslagsberäkning (back on the envelope). Vi är intresserade av storleksordningen.

Världshaven är jordklotets värmeregulator eftersom 70% av jordens yta är hav. Världshavens vämekapacitet är många hundra gånger större än atmosfärens värmekapacitet.

Världshaven är intressanta genom att temperaturprofilen botten –  yta är precis tvärtemot vad man intuitivt skulle vänta sig. Världshavens bottenskikt är kallare än ytan vilket är en följd av att vattnets täthet (vikt per kubikmeter) minskar då temperaturen sjunker mot +4 grader för att därefter börja öka igen. Den här egenskapen hos vatten är orsaken till att planeten inte är i huvudsak en isklump med ett tunt lager ytvatten nära ekvatorn.

Vattnets täthetsförändring som funktion av temperaturen skapar en effektiv mekanism för värmetransport från tropikerna till polerna. Varmt vatten transporteras på ytan mot polerna. Då havsis bildas vid polarområdena sjunker kallt och saltrikt vatten ner mot havsdjupen och rinner tillbaka mot tropikerna längs havets botten.

Haven har en annan mycket effektiv värmeregulator som leder till att havsytans temperatur vid tropikerna ytterst sällan går över ca. 28 – 30 grader C. Då det tropiska havet värms kommer avdunstningen från havsytan att öka och stora mängder vatten förs upp i atmosfären som ånga varvid det bildas moln som reflekterar bort solljus till rymden.  Vattenångan är samtidigt en extremt god värmetransportör som effektivt transporterar värme från ytan till ca. 10 km höjd där värmen strålar ut i rymden.

De två värmeregulatorerna ovan aranterar att hvsytans temperatur vid nordliga breddgrader sällan går mycket under 0 grader C eftersom det bildas ett isolerande isskikt vid lägre temperaturer och tropiska hav värms inte över 28-30 grader C eftersom det ger upphov till kylande åska på eftermiddagarn. Om mera värme strålar in till tropiska hav så leder detta till att eftermiddagens åskväder förskjuts en aning mot en tidigare tidpunkt på dagen och havsytans temperatur ändras mycket lite.

Kontroll av havens temperaturtrend

Det finns många sätt att kontrollera havens temperaturtrend. Den skenbart enklaste metoden är extremt svår i praktiken d.v.s. att mäta temperaturen på olika djup i havet och beräkna trender för hela havet. Problemet är att havets medeldjup är ca. 3500 meter och det finns helt enkelt inte ännu tillräckligt mycket pålitliga mätningar för att man skall kunna få fram en pålitlig trend. Försök görs hela tiden (en artikel i The Guardian) .

Något om hur extremt små/stora tal noteras inom naturvetenskaperna:

Vattnets temperaturutvidgningskoefficient (längd) är ungefär 0.0000293 per grad C. Det är väldigt jobbigt att skriva ner ett stort antal nollor före ett tal eller många nollor efter ett tal. Man har av denna orsak förenklat saken så att man anger de signifikanta siffrorna som ett decimaltal t.ex. ovan 2.93 och sedan anger man hur många nollor man skall sätta före eller efter detta tal för att få fram det ursprungliga talet. I ovanstående fall blir utvidgningskoefficienten:

0.0000293 = 2.93/100000 = 2.93/(10*10*10*10*10) = 2.93/10⁵ = 2.93*10⁻⁵ = 2.93E-5

På motsvarande sätt kan vi kompakt uttrycka världshavens totala (uppskattade) vikt:

1.37E21 kg vilket kan skrivas som:

1.37*10²¹ kg vilket blir:

1.37*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10*10

1.37* 1 000 000 000 000 000 000 000 kg vilket alltså blir:

1370000000000000000000 kg

Multiplikation/division  av stora tal blir enkla:

121000000*3140000 = 1.21*3.14*10⁸*10⁶= 1.21E8*3.14E6 = 1.21*3.14E(8+6) = 3.79E14

Antalet nollor får vi genom att addera exponenterna d.v.s. indexen över 10 eller talen efter E.

 

Egenskaper hos vatten

Vatten är ett rätt komplicerat ämne vad gäller expansion. Vid 10 ⁰C är utvidgningen ungefär 2.93E-5 per ⁰C. Då temperaturen sjunker så sjunker också expansionskoefficienten för att vid 4 grader C ligga på noll och därefter börjar vattnet igen att utvidga sig.  Största delen av havet har en temperatur nära 4 grader C d.v.s. expansionen är mycket liten inom detta intervall.

Vi kan göra en enkel mycket konservativ (d.v.s. den överdriver den termiska expansionen) överslagsberäkning av hur mycket havsytan stiger till följd av stigande temperatur. En grov överdrift fås t.ex. genom att anta att havets nuvarande temperatur skulle vara +10 grader C. Frågan blir då hur mycket havsytan stiger för varje grad temperaturen ökar.

dh = h*dT*a

dh = havsytehöjning i meter

h   = havets medeldjup 3500 meter

dT = temperaturstegringen i grader celsius eller Kelvin.

a   = längdutvidgningskoefficient vid +10 ⁰C = 2.93E-5/⁰C

Då vi lägger in talvärden får vi:

dh = 3500m*1⁰C*2.93E-5/⁰C = 0.1 m

Vi ser att den termiska expansionen är helt försumbar för alla förväntade havstemperaturer. Den lilla årliga stegringen 2-3 mm/år  vilket motsvarar ca. 20 cm på hundra år skulle kräva att hela havets medeltemperatur skulle stiga med 0.66 grader på hundra år. Vi ligger lång från den nivån.

Uppskattning av hur mycket havet värms idag

Man har grovt uppskattat att det i haven lagras en energimäng på ungefär 8.5E21 J/år.Mängden låter, och är, ofantlig. Frågan blir då hur mycket hela havet värms upp per år om trenden fortsätter under en lång tid framår.

Vi vet att världshavens totala massa är ungefär 1.37E21 kg.

Imbalans i havens energi-innehåll är ungefär33E22 J på 30 år. Ur detta kan vi då vi känner havets massa beräkna temperaturstegringen då vi vet att värmekapaciteten hos vatten är 4.18 J/g⁰C. Temperaturstegringen per år blir då ungefär:

dT = /33E22J/30år)/(1.37E24g*4.18J/g⁰C) = 0.00192 ⁰C/år

Min personliga åsikt är att uppskattningen är grovt i överkant eftersom haven värms uppifrån och stigande yttemperatur leder till ökande avdunstning och snabbare värmeförlust via konvektion till rymden. Vattentemperaturen under ca. 1000 m djup ligger mycket nära fyra grader d.v.s. utvidgningskoefficienten är mycket nära noll. Detta betyder att nedanstående beräkning överskattar den verkliga havsytehöjningen ca. 3 ggr.

Vi kan nu beräkna hur mycket havsytan stiger till följd av termisk utvidgning av havsvattnet som långsamt blir varmare.

dh = 3500m*0.00192⁰C/år*2.93E-5/⁰C = 1.98E-4 m/år = 0.2 mm/år

Korrektion för att två tredjedelar av havsdjupen har en längdutvidgningskoefficient mycket nära noll ger då:

dh = 0.3*0.2 mm/år = 0.06mm/år vilket torde ligga långt under vad vi idag kan mäta.

Är det här faktiskt något det lönar sig att vara orolig över 6 – 20 mm på hundra år? Det korrekta värdet torde ligga betydligt närmare 6 mm/århundrade än 20 mm/århundrade.

Osäkerheten i uppskattningarna gällande stigande havsyta ligger på uppskattningsvis 1.5 mm/år vilket är ungefär 25 gg större än den ovan uppskattade termiska havsytehöjningen.

 

Global uppvärmning klimatkänslighet och havsytans nivå

30/10/2017

Bakgrund

Vi har under de senaste årtiondena sett en lång rad av domedagsprofetior . Den idag populära varianten är att jorden till följd av ökande koldioxidhalt i atmosfären går mot en snar värmekatastrof som kommer att lägga världens kustområden under vatten och leda till ett okänt antal döda i värmeslag.

Den här artikeln är en fortsättning på en diskussion på FaceBook som startade från en länk till klimatupplysningen.se:
http://www.klimatupplysningen.se/2017/10/19/forskarna-tonar-ned-koldioxidens-betydelse-klimatforandringen/#.WejlNu7eGeV.facebook

I denna tråd diskuterades den såkallade klimatkänsligheten d.v.s. hur mycket jordens temperatur borde stiga vid en fördubbling av koldioxidhalten. Artikeln hänvisar till ca. 40 olika uppskattningar av klimatkänsligheten och det verkar finnas en trend mot ett relativt lågt värde. Den intressanta frågan är naturligtvis hur man skall få ett grepp om klimatkänslighetens ungefärliga storlek. Man brukar definiera klimatkänsligheten som:

dT = lamda * RF

där RF är såkallad ”forcing” som brukar ges som:

RF = 5.35*ln(co2/co2ref)

En enkel överslagsberäkning t.ex. genom att använda satellitdata från 1980 – 2017 (vi gör en överslagsberäkning, det är alltså inte kritiskt hur vi väljer intervallet). En överslagsberäkning ger resultatet:

lamda = 0.52

För en fördubbling av koldioxidhalten i atmosfären skulle det beräknade värdet på lamda ge en temperaturstegring på ungefär:

dT = 0.52*5.35*ln(co2_dubblad/co2_1980)
dT = 0.52*5.35*ln(678/339) = 1.92 C

Klimatforskaren Rahmstorf, som jag uppfattar som en alarmist, gjorde motsvarande uppskattning från förindustriell tid till vår tid och han beräknade uppvärmningen till 2.1 C.  Min uppskattning är antagligen tillräckligt god då IPCC:s uppskattning ligger mellan 1.5 och 4.5 C för en fördubbling av CO2-halten i atmosfären.
Knappast skrämmande och sannolikt på alla sätt en positiv uppvärmning då alla faktorer tas i beaktande.

Överslagsberäkningen är naturligtvis inte hela sanningen. En uppvärmning leder till att mera vatten avdunstar från världshaven vilket gör att luftfuktigheten ökar vilket i sin tur, eftersom vattenånga är en växthusgas, bör leda till en förstärkning av växthuseffekten … problemet är att vattenångan i atmosfären finns i tre olika former (aggregationstillstånd) gas (vilket förstärker växthuseffekten), som dimma d.v.s. vatten i form av små droppar (moln) samt i form av is. Vatten i form av moln eller iskristaller kommer att reflektera bort stora mängder av infallande ljus i vilket det största energiflödet från solen finns. Vi har idag inte den kunskap som behövs för att med säkerhet säga om den återkoppling vi får via vattenånga är positiv eller negativ. Om återkopplingen är negativ så kommer klimatkänsligheten att minska d.v.s. temperaturstegringen till följd av ökande koldioxidhalt blir lägre än väntat. Om återkopplingen är positiv så kommer temperaturstegringen att bli större än det beräknade värdet.

Havet som termometer

Avsikten med den här artikeln är att använda havsytans nivå som en termometer som mäter jordens temperatur genom vattnets expansion då det blir varmare.  Det är skäl att notera att uppskattningen av temperaturstegringen blir mycket grov eftersom vi helt enkelt inte har tillgång till alla data vi behöver:

  • Inverkan från avsmältning från glaciärer
  • Inverkan från användning av grundvattenreserver
  • Inverkan från invallning och torrläggning av havsområden
  • Inverkan från vattnets termiska expansion då temperaturen stiger. Det är denna punkt vi studerar nedan.

Det finns olika uppskattningar om ovanstående parametrar men en uppskattning är att den observerade havsytehöjningen beror till 1/3 av termisk expansion och resten är avsmältning och andra orsaker. Vi kan använda detta till att göra en grovuppskattning av hur mycket havet värms upp per år. Vi kan också uppskatta hur mycket energi som borde lagras i havet per år utgående från förändringen i havsnivån.

Bakgrundsdata

Havens medeldjup uppskattas till 3688 m.

Havens totalyta (70% av jordytan) är ungefär 3.60E+14 m².

Vatten värmekapacitet 4180 J/kg C

Vatten längdutvidgningskoefficient 6.9 E -5 /K

Det finns olika uppskattningar om hur snabbt världshavens yta stiger. Någon form av koncensus säger att stegringen är ca. 3 mm/år vilket jag personligen uppfattar vara taget rätt grovt i överkant eftersom detta helt skulle stoppa upp landhöjningen vid den egna stranden 0.3 m/100 år. Mätstationerna för mätning av havsnivån indikerar inte en så snabb plötslig höjning av havsytan. Ett exempel är Stockholm där man i likhet med Helsingforstrakten i Finland har landhöjning efter istiden på ungefär 0.35 m/århundrade som långsamt avtar av naturliga orsaker.

78_high

Fig. 1  Bilden visar hur havsytan långsamt ”sjunker” i Stockholm till följd av landhöjningen efter istiden. Notera också hur trenden ser helt oförändrad ut sedd över det senaste århundradet. Om vi upplever en extrem  uppvärmning till följd av ökande koldioxidhalt i atmosfären … varför kan vi inte se detta i t.ex. ovanstående bild. Trenden är densamma som den har varit i över hundra år. Notera att en kraftigt stigande havsyta borde synas som bladet på en hockeyklubba vinklat uppåt i bilden. Vi ser inget sådant.

Vi kan nu titta på hur stor uppvärmning av havet vi behöver för att få en signifikant höjning av havsytan. Havet värms uppifrån så att synligt ljus tränger ner i vattnet och sedan förvandlas till värme. Ljus tränger ner till kanske 100 m medan huvuddelen av energin absorberas i de första 30 m av ytskiktet. Vi hittar också, utgående från havens temperaturprofiler, en undre gräns vid ca. 1000 m djup där temperaturen inte i praktiken förändras utan den ligger på en konstant temperatur om ca. 4 C.

320px-annual_mean_temperature_change_for_land_and_for_ocean_nasa_gistemp_2017_october

Fig. 2  Uppskattning av världshavens yttemperatur sedan 1950 (NASA GISS).

En typisk temperaturfördelning i världshaven ges av:

m1u2-sf20fig2-520summer202620winter20temp

Fig. 3  Temperaturfördelningen i världshaven. Notera hur temperaturen når ett någorlunda konstant värde vid ca. 700 – 1000 m djup (ca. 4 grader). Kallt vatten fylls på vid polerna och detta vatten har en temperatur på ca. 4 grader C. Det sker en mycket långsam blandning av det varma ytvattnet och det kalla bottenvattnet.

Vi kan nu utnyttja temperaturprofilen till att uppskatta hur stor den årliga temperaturstegringen i världshaven måste vara för att havsytan skall stiga med ett givet värde. Temperaturprofilen visar att vi inte behöver bekymra oss om havet nedanför ca. 1000 meter eftersom temperaturen går mot ett konstant värde som bestäms av vattnets maximala densitet. Inverkan från termisk utvidgning av havsvattnet kommer alltså från ett ca. 1 km tjockt varmt ytvatten.

Längdutvidgningen i ett material ges av:

dL = alfa * dT * L

där:

alfa är längdutvidgningskoefficienten 6.9*E-5 /K.

L är det aktiva djupet uppskattat till ca. 1000 m

dT är den behövliga uppvärmingen i ytskiktet i grader C (eller K).

Vi löser dT ur formeln ovan och får då:

dT = dL/(alfa*L)

Notera att temperaturstegringen är störst i ytskiktet för att sedan falla mot det konstanta 4 grader på över 1000m djup. Resultatet är att det värde vi beräknar blir grovt i överkant eftersom ytskiktet inte uppvärms homogent. Vi ser idag uppgifter om att havsytan stiger med ca. 3 mm/år även om uppskattningarna varierar mellan ca. 1mm/år och ca. 3.5 mm/år. Ytterligare har man gjort en uppskattning att den termiska utvidgningen idag utgör ca. 1/3 av det totala värdet på höjningen av havsytan.

Om vi accepterar höjningen av havsytan 3.2 mm/år och accepterar att 2/3 av stegringen är till följd av smältande glaciärer och pumpning av grundvatten som på slutändan hamnar i haven och andra faktorer så får vi:

dL = 1.07 mm/år till följd av termisk utvidgning.

För att detta skall vara riktigt måste hela ytskiktet på 1000 m värmas upp med ungefär:

dT = 1.07E-3 m/(6.9E-5 /K * 1000m) = 0.0155 K/år

Om vi beaktar att stegringen är störst vid ytan för att linjärt gå mot 4 grader vid 1000 m djup så måste vi fördubble temperaturstegringen för att få en tillräckligt stor höjning av havsytan se bild 3 ovan. Vi får då ungefär dT = 0.03 C / år.

Vi kan jämföra detta med trenden hos havsytans temperatur (se fig. 2) som under tiden 1950 – 2017 ger en årlig temperaturstegring på ca. 0.009 grader per år. Vi ser alltså att den observerade temperaturstegringen är ungefär en tredjedel (1/3) av vad den skulle behöva vara för att vi skulle få den angivna totala havsytehöjningen på 3.2 mm/år.

Om ovanstående grova överslagsberäkning är korrekt så kan man endast dra slutsatsen att det angivna värdet för stigande havsyta sannolikt har överdrivits åtminstone  2 … 3 ggr.

Vi kan kontrollera riktigheten genom att jämföra vårt värde med ett värde man har fått från tidvattenmätare. Ett medelvärde för 11 uppskattningar ger en stegring av havsytan med ungefär 1.87 mm/år (ca. 19 cm/århundrade).  Vi bör igen använda samma uppskattning att 1/3 av detta värde är termisk utvidgning d.v.s. 0.62 mm/år. Vi kan nu kontrollera hur stor temperaturstegring det behövs för att den termiska utvidgningen skall höja havsytan med 0.62 mm/år.

dT = dL/(alfa*L)

dT = 0.62E-3m/(6.9E-5/K*1000m) = 0.009 K  (grader C)

Det är intressant att notera att detta exakt motsvarar den mätta trenden för havsytans temperatur. Vi bör dock sannolikt göra samma korrektion som tidigare  d.v.s. anta en ungefär linjär temperaturfördelning ner mot 1000 m djup och vi får då 0.018 C/år. Värdet är då ungefär dubbelt större än den observerade vilket tyder på att någon eller en kombination av nedanstående punkter kunde gälla:

  • Uppskattningen att 1/3 av stegringen i havsytans nivå är termisk utvidgning är alltför hög och ett riktigare värde skulle vara t.ex. 1/6.
  • Den uppskattade stegringen i havsytans nivå ligger i den undre kanten av uppskattningarna från kustbaserade mätare (Gomiz and Lebedeff 1987) .
  • Satellitmätningar av havsytans nivå stämmer inte överens med resultatet från konventionella havsnivåmätare (tidal gages) utan uppskattningen är nästan dubbelt större än resultatet från direkta mätningar. Satellitmätningarnas korrektioner har diskuterats rätt mycket och någon klar koncensus finns inte. Under senare år har satellituppskattningarna trimmats uppåt … är det möjligt att dessa justeringar är fel?

Jag avslutar denna artikel med att knyta tillbaka till kommentaren om klimatkänsligheten till följd av ökande koldioxid eftersom vi ovan har utnyttjat temperaturdata gällande havsytans temperatur (NASA GISS) som visar en högsta uppskattningen av temperaturstegring av alla de allmänt utnyttjade globala temperaturuppskattningarna. Min avslutningsfråga blir då:

Då 70% av jordens yta är vatten så borde vi inte då vid beräkning av klimatkänsligheten hellre använda havsytans globala temperaturanomali än mätstationer på land som störs av t.ex. värmeläckage från bebyggelse UHI (Urban Heat Island). Världshaven dominerar vädersystemen och påverkar kraftigt temperaturen på land.

Klimatkänslighet utgående från havsytans temperatur

Vi utgår från den välkända formeln för temperaturförändring till följd av stigande koldioxidhalt i atmosfären (se ovan):

dT = lamda * RF

där:

dT är temperaturstegringen till följd av ökande växthusgaser.

lamda är klimatkänslighetparametern.

RF är påverkan från växthusgaser (radiative forcing).

Vi har dessutom följande uttryck för RF:

RF = 5.35*ln(CO2/CO2_ref)

Då vi kombinerar dessa och löser lamda får vi:

lamda = dT/(5.35*ln(CO2/CO2_ref))

Vi tar världshavens uppvärmning ur figur 2 och uppskattar detta till ungefär 0.6 grader då vi noterar att svansen vid 2016-2017 sannolikt beror på en kraftig ”eEl Ninjo” d.v.s. vi gör en linjär uppskattning av temperaturen. År 1950 var CO2-halten ungefär 307 ppm och 2017 ungefär 404 ppm. Vi lägger in talvärden och beräknar lamda:

lamda = 0.6/(5.35*ln(404/307))

lamda = 0.408

Vi kan nu utnyttja det beräknade värdet på lamda för att få en uppskattning av hur mycket temperaturen skulle stiga vid en fördubbling av koldioxidhalten i atmosfären:

dT = lamda*5.35*ln(614/307)

dT = 0.408*5.35*ln(2) = 1.5 grader C

Skrämmande? Nej! Klimatkänsligheten är så låg att vad vi än gör så kommer vi att ligga under den godtyckliga politiska gränsen 2 C. Politikerna har alltså gjort en helgardering där de inte kan förlora däremot är ju klimatfrågan perfekt för att flytta över pengar i de rikas fickor på de fattigas bekostnad. Klimatfrågan är politiskt omsatt i en ny form av utvecklingsbistånd där man via Världsbanken förbjuder uländerna industrialisering och ett fungerande energisystem oftast baserat på kol med hänvisning till ett ickeproblem.

Det finns naturligtvis de som konstaterar att ovanstående beräknade värde på klimatkänsligheten inte är korrekt då uppvärmningen kommer att leda till större avdunstning och mera vattenånga i atmosfären. Vattenånga är i likhet med CO2 en växthusgas … problemet är att vattenånga förekommer i tre olika aggregationstillstånd i atmosfären nämligen vattenånga, vattendimma (moln) och iskristaller (moln). Vi kan inte ännu övertygande uppskatta om ökande molnighet ger positiv återkoppling till följd av mera växthusgas eller negativ återkoppling till följd av att mindre solljus når jordytan. Min uppfattning är att om vi inte ännu kan bestämma återkopplingens förtecken så är det bäst att utgå från det okorrigerade beräknade värdet ovan.

Källor:

  1. Havsnivåmätere (tidal gages) http://sealevel.colorado.edu/content/tide-gauge-sea-level
  2. Havsytans nivå: http://www.ioc-sealevelmonitoring.org/
  3. Stockholm : http://www.psmsl.org/data/obtaining/stations/2131.php
  4. Världshavens temperaturprofil University of Havai: https://manoa.hawaii.edu/exploringourfluidearth/physical/density-effects/ocean-temperature-profiles/compare-contrast-connect-vertical-profiles-ocean
  5. Havsytans temperatur: https://www.epa.gov/climate-indicators/climate-change-indicators-sea-surface-temperature

 

 

Vetenskap och förutfattade meningar

03/11/2014

Alla ”vet” idag att universum har blivit till genom ”Den stora smällen” eller ”Big Bang”. Tron på universums tillblivelse genom ”big bang” bygger på ett enkelt observerbart fenomen som upptäcktes av astronomen Edvin Hubble 1929. Tanken på ett expanderande universum skapades av Georges Lemaitre som förutom den då relativt nya relativitetsteorin också som katosk präst strävade att förena fysiken med skapelseberättelsen.

Edvin Hubble upptäckte att allmänt taget alla mycket avlägsna objekt verkade vara rödförskjutna d.v.s. ljuset från en fjärran galax är rödare än ljuset från en närliggande galax. Rödförskjutningen betyder inte att vi endast ser rött ljus från galaxen utan allt ljus t.ex. en blå spektrallinje i spektret från en avlägsen galax inte längre ligger på samma plats i spektret utan den har förskjutits mot längre ”rödare” våglängder. Ursprungligen ”röda” spektrallinjer förskjuts mot infrarött .

Då man använde specifika typer av supernovor som ”standard” ljuskällor d.v.s. man antog att supernovorna var ungefär lika ljuskraftiga så kunde man enkelt beräkna avståndet till en avlägsen supernova då man vet att ljusstyrkan avtar med kvadraten på avståndet. Genom att studera spektret från den avlägsna galaxen och hur mycket ljuset var rödförskjutet kunde man, om man antog att rödförskjutningen var en följd av en dopplerförskjutning, enkelt beräkna hur snabbt den avlägsna galaxen/ljuskällan avlägsnar sig från oss. Vår standardljuskälla, supernovan, ger oss avståndet och rödförskjutningen ger oss hastigheten.

Då man studerar rödförskjutningen i olika riktningar så ser man att avlägsna galaxer i alla riktningar sett från jorden är rödförskjutna och således rör sig bort ifrån oss med en hastighet som är större ju avlägsnare objektet är.

Ovanstående resonemang verkar, hoppas jag, klart och enkelt att förstå. Betyder det här att ”big bang” är ett bevisat faktum? Svaret är ganska entydigt nej!

Ovanstående resonemang utgår från att det inte finns alternativa förklaringar till rödförskjutningen … vilket det finns. En doppler (hastighetsberoende) rödförsjutning leder till intressanta konflikter.

På 1960-talet upptäckte man underliga radiokällor som man trodde var stjärnor men som visade sig ha mycket underliga optiska spektra. Kvasarerna var extremt kraftigt rödförskjutna vilket gjorde dem extremt avlägsna och eftersom man kunde se dem trots det extrema avståndet så måste de ju vara mycket lyskraftiga. I vikipedia finner vi:

Kvasar

Kvasaren 3C 273 på ett foto taget av Hubble-teleskopet

En konstnärs tolkning av en kvasargalax

En kvasar (av engelskans quasi-stellar radio source, quasar) är en extremt ljusstark och avlägsen aktiv galaxkärna. Den överglänser sin värdgalax så mycket, att denna inte tidigare har kunnat observeras. Först med hjälp av CCD-teknik och senare adaptiv optik har många värdgalaxer kunnat påvisas.

Detta energiutstrålande objekt i universum avger enorma mängder elektromagnetisk strålning från radiovågor till gammastrålning. Det är faktiskt inte ovanligt för en enskild kvasar att utstråla energi, motsvarande flera hundra vanliga galaxer. Själva kvasaren är ett förhållandevis litet objekt, men många ligger på ofantligt stora avstånd från jorden.

Med ett så stort energiflöde krävs en mycket kraftfull energikälla och inga andra teorier än att kvasarer är aktiva galaxkärnor har framlagts, som förklarar ett fenomen av denna magnitud. Det rör sig alltså om ett supermassivt kompakt objekt omgivet av en ackretionsskiva i centrum av en galax. Strålningen kommer sig av att gas som närmar sig det förmenta svarta hålet hettas upp i ackretionsskivan och genom jetstrålar avger enorma mängder energi.

Kvasarer var länge de objekt som hade de högsta rödförskjutningar som uppmätts. Rekordet Z=7,085 har ULAS J1120+0641 som upptäcktes 29 juni 2011.[1] Siffran har dock numera överträffats av flera galaxer.

Man accepterar utan att blinka ett objekt som kräver en energiproduktion hundra gånger större än hela vår galax energiproduktion. Notera också att man konstaterar att inga andra teorier för vad kvasarer har framlagts. Faktum är att vi igen ser hur det koncensusdrivna vetenskapssamfundet fungerar. Det finns utan tvivel andra alternativ och dessutom förklaringar som gör kvasarer till normala stellära objekt som inte längre är extremt ljusstarka.

Halton C. Arp är känd för att ha katalogiserat galaxer. I samband med detta arbete upptäckte han att det i anslutning till många galaxer fanns kvasarer som verkade kopplade till ”modergalaxen” via synliga materiebryggor. Om Arps observation av kvasarer, med stor rödförskjutning,  kopplade till relativt närliggande galaxer med mycket mindre rödförskjutning stämmer så betyder det att kvasaren ligger rätt nära oss vilket leder till att energiproduktionen inte är extrem och problemet med kvasarer som producerar mera energi än hundra galaxer försvinner. Om man accepterar den här enkla lösningen så uppstår det dock ett nytt problem …

Om Arps observationer är korrekta så kan det hända att hela teorin gällande ”Big Bang” faller ihop som ett korthus eftersom då den observerade rödförskjutningen inte längre med säkerhet är en följd av avlägsna objekts rörelse. Om rödförskjutningen inte, i huvudsak,  beror på universums expansion så kommer hundratals kosmologers livsarbete att vara bortkastat. Den naturliga reaktionen är då att vägra se på data i likhet med motståndarna mot Giordano Bruno och Galilei och hoppas att problemet försvinner.

Det finns ett talesätt som säger att vetenskapen går framåt via gamla professorers begravningar.

Nedanstående rätt långa video ger en intressant inblick i problematiken.

Slipning av f-hålets ”vinge”

04/07/2014

En diskussionstråd på Maestronet diskuterar bland annat fioltrimning. Den bortgångna fysikern Fry experimenterade bl.a. med att skrapa fiolen på insidan med specialverktyg för att på såsätt locka fram önskade egenskaper his fiolen. Min metod (Lars & Johan Silén) är betydligt bättre än Frys, eftersom det är extremt enkelt att slipa fiolen på insidan. På Maestronet ställer sig en del skribenter tvivlande till effekten av inre justeringar. Jag beslöt att göra ett enkelt experiment.

Jag knacktestade min Guarnerikopia #4 och märkte att knacktonen i F-hålets yttre vinge på G-sidan klingade lägre än motsvarande vinge på diskantsidan. Det är lätt att höja knacktonen genom att försiktigt slipa vingen från insidan. Jag slipade 100 drag fram/tillbaka med 10 mm magneter. Uppskattningsvis blev det slipade området ca. 10 um tunnare d.v.s. ca. 1/100 mm. Kan den här förändringen mätas?

Jag mätte fiolens fulla spektrum genom att knacka på fiolens stall från G-sidan med den trubbiga ryggsidan av en smörkniv i metall. Knackverktyget måste vara hårt om man inte kraftigt vill dämpa spektret i de höga frekvenserna. Mätningen gjordes alltså innan fiolen hade pinats på något sätt.

Efter den första mätningen slipade jag vingen 100 drag varvid tjockleken uppskattningsvis minskade med 1/100 mm. En provspelning indikerade subjektivt att tonen lät brilliantare.

Därefter mättes det fulla spektret igen på samma sätt som tidigare och båda frekvenskurvorna exporterades till programmet Grace (xmgrace) så att kurvorna kunde ritas ut i samma bild. Resultatet blev att den största intensitetsförändringen blev ca. 3 dB i trakten av 1 kHz. Mindre förändringar går att se hela vägen upp till ca. 8 kHz.

G-side_f-hole_thinned_10um

G-side f-hole outer ”wing” thinned by 10 um (red curve). The original unmodified spectrum is in black.

Min uppfattning är att bilden entydigt stöder den subjektiva observationen att den testade minimala förändringen tydligt är hörbar.

f-hole_outer_wing

 

Det är inte alltid så lätt att ”ta fram”

27/05/2014

Det finns ett svenskt uttryck jag inte gillar: ”Att ta fram något” … jag gillar själv mycket bättre t.ex. ”att utveckla något”. Varför gillar jag inte ”ta fram”? Orsaken är att jag som tidigare produktutvecklare och innovatör har sett den långa kedja av misstag som ofta ligger mellan ett beslut om att skapa en ny produkt och det i bästa fall säljbara resultatet. Jag uppfattar att ”ta fram” förminskar utvecklarnas roll genom att man ser framför sig hur försäljningschefen vänder stegen mot företagets ofantliga lager där en ofantlig mängd produkter som aldrig visats för någon ligger prydligt radade på hyllor så långt ögat kan nå.  Chefen går fram till en produkt och tittar på den och säger ”kanonbra” den här sätter vi i produktion. Produkten är ”framtagen” … men det är inte så det går till!

Hur ser det ut i verkligheten

Det finns idag ett antal stater som har utvecklat, inte tagit fram, raketteknik som tillåter dem att skjuta upp en satellit i omloppsbana kring jorden. Kedjan av försök och misstag har varit lång innan man kom så här långt. Nästan varje misstag betydde en föstörd raket. Om en raketmotor inte höll måttet … explosion. Om styrsystemet inte fungerade … explosion. Om en drivmedelspump inte höll måttet … explosion o.s.v. Videomaterialet är på engelska.

Följande video visar en liten grupp amatörer som ställer upp målet att bygga en raket som kan nå rymden.


Pointman's

A lagrange point in life

THE HOCKEY SCHTICK

Lars Silén: Reflex och Spegling

NoTricksZone

Lars Silén: Reflex och Spegling

Big Picture News, Informed Analysis

This blog is written by Canadian journalist Donna Laframboise. Posts appear Monday & Wednesday.

JoNova

Lars Silén: Reflex och Spegling

Climate Audit

by Steve McIntyre

Musings from the Chiefio

Techno bits and mind pleasers

Bishop Hill

Lars Silén: Reflex och Spegling

Watts Up With That?

The world's most viewed site on global warming and climate change

TED Blog

The TED Blog shares interesting news about TED, TED Talks video, the TED Prize and more.

Larsil2009's Blog

Lars Silén: Reflex och Spegling

%d bloggare gillar detta: