Archive for the ‘Fiolstall, trimning’ Category

Fiolstall snitten vid knäna?

20/04/2021

Jag har under den senaste tiden jobbat med ett programpaket för mätning av olika akustiska parametrar på en fiol. Paketet är tänkt att fungera som en motsvarighet till den universal voltmätare en elektriker använder. Ett av de program jag har skrivit för detta ändamål kallar jag ”tap” d.v.s. ”knackning” på engelska. Med hjälp av programmet och en mikrofon kan en fiolbyggare enkelt mäta de vanligaste resonanserna i en fiol såsom A0 (Helmholz luftresonansen), Bo, B1-, B1+ etc. Programmet kan också användas som ett instrument för att lära sig förstå hur ett stall fungerar och således hjälpa byggaren att eliminera tonfel i instrumentet.

Ett fiolstall är mycket komplicerat och min uppfattning är att väldigt många byggare gör sina stall enligt traditionella ”recept” som erfarenheten har visat sig ge någorlunda goda resultat. Ett fiolstall är väldigt intressant genom att 100% av ljudenergin som fiolen producerar går genom stallet. Det är självklart att stallet fungerar som ett effektivt filter som släpper igenom energi vid vissa frekvenser mycket bra medan andra frekvenser dämpas. En i fiolbyggarsammanhang rätt välkänd egenskap hos ett stall är den såkallade ”stallskullen” på engelska ”bridge hill”. Stallskullen ger en förstärkning av frekvenserna kring 2,5 – 3 kHz och denna utbredda resonanstopp breddar fiolens frekvensomfång på diskantsidan. Vi vill ha en tydlig diskant upp till kanske 4 kHz som sedan snabbt dämpas vid högre frekvenser eftersom alltför mycket höga frekvenser gör tonen sträv.

Jag köpte för några år sedan en billig, i princip rätt välbyggd, kinesisk fiol på auktion som demonstrationsmaterial för fioljustering på en Folklandiakryssning(*) gissningsvis 2018 (priset var $115) . Under kryssningen demonstrerade jag som representant för fiolbyggarna hur man byter ljudpinnen, justerar stallet etc. med möjlighet för kryssningsdeltagarna att provspela instrumentet efter justeringarna. Jag har efter kryssningen använt instrumentet som ett billigt övningsobjekt för inre justering genom magnetslipning. Jag öppnade instrumentet för något år sedan, mätte och justerade lock och botten. Det typiska felet på billiga kineser verkar vara att speciellt locket är tydligt för tjockt. Även botten kan vara för tjock men detta gäller främst sido-områdena eftersom bottenplattans mittdel gärna får vara relativt tjock. Jag började för några år sedan att vid sidan av nordisk folkmusik försöka lära mig kletzmermusik och instrumentet kom att bli mitt ”Kletzmerinstrument”.

Jag har jobbat, av och till, en hel del med instrumentet men jag har inte varit helt nöjd. Fiolen har som ett experiment ett relativt tunnt stall vilket lätt leder till att tonen blir ljus men basen inte så bra. Jag beslöt för några dagar sedan att mäta mig igenom ett stall från råstallet till ett färdigt spelbart stall. Resultatet blev några tiotal spektra från olika skeden av tillverkningen av stallet. Då jag skar till bågen upptill så att stränghöjden skulle bli den önskade så steg stallets huvudfrekvens från ungefär 500Hz till ca. 650 Hz. Jag reagerade genast på att 650 Hz ligger mycket nära den grop vi vill ha i responsen kring 700 Hz för att fiolen inte skall låta nasal.

Det verkade självklart att den stora höjningen av frekvensen hos den största resonanstoppen var en följd av att jag tog bort rätt mycket massa från stallets övre del. Hur skulle jag bära mig åt för att flytta tillbaka huvudresonansen till trakten av 500 Hz där jag antog att den borde finnas. Mitt resonemang utgick ifrån att jag borde mjuka upp stallet t.ex. genom att förstora öronens öppningar samt göra kanalerna mellan öronöppningarna och hjärtat smalare. Resultat blev dock obestämt med en sänkning på i bästa fall 10-20 Hz.

Följande försök var att höja valvet mellan benen och på detta sätt göra benen mjukare och på detta sätt få ner resonansen. Samma problem som tidigare. Huvudresonansen sjönk men relativt obetydligt.

Jag hade avsiktligt gjort det nya stallet betydligt tjockare nedtill än orginalet vilket ju i sig kunde tänkas göra det styvare och höja frkvensen … å andra sidan borde tjocklekens inverkan rent teoretiskt vara relativt liten. Plötsligt slog det mig, då jag satt och tittade på stallet, att snitten på knäna saknades och att deras effekt kunde vara att göra benen/knäna mjukare vilket borde sänka stallets resonansfrekvens.

Knackmätningen av stallet gjordes så att kanske 2 mm av stallsfötterna drogs fast i ett skruvstäd. Mikrofonen var en stormembransmikrofon av typen t-bone USB SC-440. Mikrofonenens avstånd till stallets platta baksida var ungefär 5 cm. Jag använde en svetselektrod av Volfram med diametern 2,3 mm som hammare och knackade tre gånger med kanske 2 sekunders intervall på örat ungefär i höjd med öronöppningens översta del. Bilden nedan består alltså av tre spektra som ligger på varandra därav de olika färgerna. Programmet söker själv fram de olika knackningarna och beräknar separata spektra för de olika knackningarna. Programmet tillåter mig att föra kursorn till resonanstoppen i mitten av bilden och avläsa motsvarande frekvens.

En aning matematisk bakgrund

Ett spektrum är egentligen en kombination av ett stort antal sinuskurvor (vågkurvor) valda så att om vi adderar alla dessa olika frekvensers amplituder och faser så kan vi återskapa den ursprungliga tonen vi spelade in via mikrofonen. I vårt fall så representerar alltså spektret alla de frekvenser vi skulle behöva kombinera för att återskapa ljudet från en knackning.

Det finns en alldeles speciell teoretisk ”knackton” som inom matematiken och fysiken går under namnet Dirac’s delta puls d.v.s. en knackning som är i princip oändligt kort men som har en yta under kurvan som är lika med ett. Denna mycket speciella puls har egenskapen att vi för att skapa den från olika separata frekvenser måste summera alla frekvenser från noll till oändligt och alla dessa frekvenser skall ha konstant amplitud! En skarp knackning motsvarar således i princip att vi skulle göra ett frekvenssvep med (någorlunda) konstant amplitud genom instrumentet. En knackning är naturligtvis endast en grov approximation av deltapulsen men jag försöker göra pulsen skarp genom att använda volframstaven i stället för t.ex. en penna. Min knackning på stallet betyder alltså att jag gör ett frekvenssvep genom stallet och tittar på vilka frekvenser som går igenom starka och vilka som dämpas.

Sagt och gjort. Jag hade mätningar av stallet före jag gjorde snitten och mätte stallet på nytt efter snitten och kunde konstatera att huvudtoppens frekvens sjönk väldigt kraftigt.

I stället för en huvudresonans på ca. 650 Hz så låg resonansen nu på mellan 515 och 530. Effekten var dramatisk och G- och D-strängarna klingade mycket bättre utan den torrhet som fanns tidigare.

Då jag provspelade fiolen med det gamla och det nya stallet så märkte jag plötsligt att det omodifierade gamla stallet saknade snitten! Perfekt! Nu kunde jag göra en serie mätningar av orginalstallet före modifikationen och därefter modifiera stallet och göra samma mätningar på nytt. Bilderna nedan är från modifikationen av det ursprungliga stallet.

Det gamla stallet, ett sannolikt falskt AUBERT stall, före modifikationen.

Fig. Notera att snitten vid stallets knän saknas och endast finns antydda.
Fig. Situationen före modifikation. Huvudtoppen ligger vid ungefär 630 Hz.
Fig. Stallet efter att snitten är skurna. Fiolen är en ”konstgjort” åldrad kines som ropades in för $111 för några år sedan. Fiolen är ett lämpligt testobjekt eftersom världen inte går under om jag klantar mig och förstör instrumentet.

Efter att jag lade till snitten i knäna så sjönk huvudresonansfrekvensen kraftigt med ca. 100 Hz vilket är att uppfatta som dramatiskt.

Fig. De skenbart helt obetydliga snitten flyttar huvudresonansen nedåt med ungefär 100 Hz d.v.s. förändringen är dramatisk!

Mitt mätinstrument vid modifikationer av ett instrument är att med hjälp av egna datorprogram beräkna de såkallade Dünnwaldparametrarna som Anders Buen har beskrivit (se källan i slutet av artikeln). Dünnwaldparametrarna beskriver vilken repons/klangfärg 30 st. gamla toppinstrument har. Målet vid justering blir då att lägga in det egna instrumentet så att det helst ligger någonstans i mittfältet bland toppinstrumenten. Gissningsvis är instrumentet då inte åtminstone urdåligt.

Bilderna nedan visar mätning av instrumentet med det gamla ojusterade stallet, de första sex mätningarna och därefter ytterligare fem mätningar efter modifikationen d.v.s. den enda ändringen var att lägga till snitten. Stallets plats mättes före och efter justeringen och den fria stränglängden mot stränghållaren var 55 mm med en mensur på 330 mm.

Bilderna är tagna ur mitt Vtrim programs databas. Jag mäter så att jag spelar en halvtonsskala i första läget från låga G upp till H på DE-strängen. Spridningen är rätt stor eftersom jag sannolikt inte spelar på exakt samma sätt från gång till gång. De röda punkterna visar visar det egna instrumentets Dünnwaldparametrar i förhållande till de 30 referensinstrumentens motsvarande parametrar. Totalt har jag i bilden gjort 11 mätningar 6 med det oförändrade stallet och fem efter justeringen. Notera att man skall ta referensinstrumentens parametrar med en ganska stor nypa salt eftersom rumsakustiken där ljudet spelades in är okänd. Likaså är akustiken i rummet där jag själv spelar endast jämförbar med tidigare spelomgångar i samma rum. Jag spelade in halvtonsskalan på ca. 2 m avstånd från mikrofonen. Jag skulle gärna ha hållit ett större avstånd men rummet är för litet. Rummet är relativt kraftigt dämpat.

Fig. Instrumentets basrespons före stallsjusteringen kan ses i desex röda punktedrna till vänster i figuren. Den blå kurvan är de trettio referensinstrumentens motsvarande värden. Linjerna (+) upptill och nertill visar toppinstrumentens motsvarande högsta samt lägsta motsvarande värded. Får man in det egna instrumentet någonstans i mittfältet så kan man antagligen vara rätt nöjd. Kletzmerfiolens mätta bas efter modifikationen blev helt bra.

Fig. Instrumentets mätta Dünnwald-nasalitet låg före modifikationen i huvudsak utanför variationsintervallet för toppinstrumenten med genom att snitta stallet förbättrades värdet så att vi ligger inom toppinstrumentens grupp.

Dünnwalds parameter för Brillians/Klarhet påverkades rätt lite. Min erfarenhet har varit att det ofta för mig har varit besvärligt att lägga in nasaliteten så att den blir bra. Basen är rätt enkel att justera in och brilliansen brukar ligga på plats direkt.

Fig. Vi ser att snitten gjorde att brilliansen sjönk något men helt obetydligt. Brilliansen är helt bra.

Min erfarenhet är att Dünnwaldparametrarna förändras rätt snabbt (timmar-dagar) efter en modifikation som den vi gjorde genom att snitta knäna. Jag gissar att det vi ser är att egenskaperna hos trämaterialet i stallet förändras då den råa träytan oxiderar och jag gissar att ytan samtidigt hårdnar.

Slutkommentar

Experimentet visar att snitten vid ett fiolstalls knän är nödvändiga och de ger ett hörbart resultat. Min personliga uppfattning efter att ha byggt några nyckelharpor är att det sannolikt skulle vara en god idé att lägga till någon typ av motsvarande inskärningar på fötterna på en nyckelharpas stall nära locket. Jag uppfattar att jag på nyckelharpa har haft problem med att få den respons jag vill ha på C- och G-strängarna. Kunde eventuellt denna modifikation hjälpa? Jag gissar att man kunde lägga två eller tre snitt med såg t.ex. 5 mm, 10 mm och 15 mm upp från locket skuret från insidan och utsidan. Snitten görs så djupa att de går igenom något mer än halva stallsbenets tjocklek. Resultatet blir då ett knä som borde fungera som knät på ett fiolstall utan tekniska komplikationer. Funktionellt bör effekten bli densamma d.v.s. vi sänker stallets huvudresonans vilket bör leda till att de lägsta strängarna fungerar bättre.

Tydligen måste jag fixa till ett nytt stall till någon av mina harpor och göra motsvarande mätningar som ovan för att verifiera att detta även fungerar på nyckelharpor samt naturligtvis också se om man får en positiv effekt av modifikationen.

(*) Under många år har spelmän och folkdansare i Finland gjort en kryssning i början av januari med start fredag kväll och hemkomst lördag kväll med någon av Silja Lines båtar. Fiolbyggarna har ställt ut instrument och ibland har vi kunnat hjälpa någon spelman om olyckan gar varit framme t.ex. genom att sätta i en omkullfallen ljudpinne eller andra enkla småreparationer.

Källor: Anders Buen: On Timbre Parameters and SoundLevels of Recorded Old Violins https://www.akutek.info/Papers/AB_Timbre_Parameters.pdf

Ljudpinneverktyg för Nyckelharpa

18/09/2018

Jag konstruerade för kanske ett år sedan ett ljudpinneverktyg för justering av fioler. Verktyget används till att mäta ljudpinnens plats i förhållande till stallet.

Som känt har ljudpinnen en viktig roll i hurudant ljud fiolen ger. Det är inte utan orsak man på olika språk säger att ljudpinnen är violinens själ! Nyckelharpan har precis som fiolen en ljudpinne som även den måste vara korrekt injusterad för att harpan skall klinga. Ljudpinneinstrumentet nedan är konstruerat för nyckelharpa d.v.s. det är något större än motsvarande instrument för violin.

Ljudpinneverktyget består av två halvor. Den nedre halvan har ett urtag som motsvarar en halv ljudpinne. Man för in den nedre halvan genom f-hålet och hakar urtaget i ljudpinnen. Den övre halvan som således ligger ovanpå locket visar då grafiskt exakt var ljudpinnen står. Vill man dokumentera ljudpinnens plats kan man ange avstånd på följande sätt:

  • Den korta skalan närmast ljudpinnens plats i riktning mot f-hålet anger ljudpinnens avstånd till stallets kant. Skalan går från 5 – 10 mm.
  • Den långa skalan visar ljudpinnens plats i förhållande till f-hålet. Skalan går från 15-30mm
  • Den korta skalan som går i instrumentets längdriktning anger avståndet mellan ljudpinnen och stallets bakkant.

Ljudpinneverktyget har konstruerats utgående från Sören Åhkers ritning (  http://www.sorenahker.com/sortiment/order.htm ÖVR008). Jag gissar att samma verktyg bör gå att använda också på andra nyckelharps ”familjer”.

Ljudpinneverktyg_openscad

Bilden visar hur verktyget har skapats i programmet OpenScad. Man kunde lika väl ha använt något CAD-program som stöder generering av stl-filer.

Verktyget i bilden är tänkt som en gåva till nyckelharps ”gurun” Esbjörn Hogmark.

Hur kan jag köpa verktyget? Du kan inte köpa det men du kan skriva ut det själv. I slutet av den här artikeln hittar du en länk till ljudpinneverktygets ”.stl”-fil.  Du laddar ner stl-filen och går till någon person som har en 3d-skrivare, till ett bibliotek (gäller åtminstone Helsingforsregionen i Finland) .. eller så går du till en firma som gör 3d utskrifter.

Hur skriver man ut verktyget?

3D-skrivaren drivs av ett kontrollprogrami mitt fall heter programmet ”Repetier-Host” men det finns flera andra som fungerar enligt samma principer.

Steg #1

Ladda ner .stl-filen på datorn till en lämplig katalog. Det enda kravet är att du hittar programmet. Du kan lagra filen på en minnepinne om du vill skriva ut verktyget på en publik skrivare.

Steg #2

Starta kontrollprogrammet i mitt fall Repetier-Host. Sätt på skrivaren. Då programmet startar klickar man ”Connect” för att koppla ihop skrivare och dator.

Steg #3

Ladda in stl-filen i mitt fall finns en knapp ”Load”. Programmet visar nu hur verktyget kommer att se ut i grafisk form på skärmen.

Steg #4

Översätt stl-filen till maskininstruktioner. Detta görs med ett program som kallas ”Slicer” d.v.s. programmet skivar den 3d-modell som stl-filen beskriver i ungefär 0,25 mm höga skivor ch beräknar därefter hur skrivarhuvudet skall röra sig för att fylla skivan med plastmaterial.

Steg #5

Ställ in bäddens temperatur enligt skrivarens instruktioner. I mitt fall kör jag med materialet PLA för vilket bäddens tempeSteg #1ratur kan sättas till 60 grader C och extruderns (utskriftsmunstycket) temperatur till 205 grader C.

ljudpinneverktyg

Bilden visar hur det ser ut på datorskärmen under utskriften. Utskriften kräver ca. 20 minuter d.v.s. det finns precis tid för en kopp kaffe.

Du hittar ljudpinneverktyget här i zip-format. Filen måste packas upp innan den används. Moderna perativsystem packar upp filen då man klickar på den.

Filen finns här: ljudpinneverktyg_nyckelharpa.

Montering efter utskrift

Verktyget skrivs ut i två delar som limmas ihop t.ex. med hjälp av Superlim (Cyanoacrylat), epoxy eller något annat lämpligt lim. Notera att vattenbaserade lim inte fungerar så bra eftersom plasten gör att limmet torkar mycket långsamt.

Steg #1

Slipa ytan på den undre delen d.v.s. den del som har en fyrkant med hål i i den ena ändan. Slipning av ytan gör att vi inte av misstag skrapar insidan av harpan då verktyget används. Den övre delens undre del är helt slät och behöver inte slipas.

Steg #2

Sök fram en 4mm maskinskruv med mutter varefter du stryker lim på fyrkanten i den undre delen. För skruven genom hålet i den undre och den övre delen och dra åt muttern försiktigt. Vrid genast den övre delen så att cirkeln som visar ljudpinnens plats matchar motsvarande urtag i den undre delen.  Du kan också trä en grov nål genom det lilla hålet mellan de två skalorna i verktygets längdriktning. Motsvarande hål finns också i den undre delen.  Använd nålen till att rikta den övre delen i förhållande till den undre så att passningen mellan delarna blir exakt.

Steg#3

Drag åt muttern och vänta någon timme på att limmet stelnar helt.

Man kan göra skalorna tydligare genom att färga skalstrecken t.ex. med vit, silver- eller guldmärkpenna.

Verktyget får fritt skrivas ut och om så önskas också i försäljningssyfte. Vid försäljning bör källan d.v.s. en länk till eller utskrift av den här artikeln följa med verktyget.

Justering av en kinesisk altiol (Yita Music)

18/01/2015

Jag köpte en altfiol från Yita Musik i Kina för några år sedan. Priset låg då på kanske 250 dollar. Fiolen har spelats av olika musiker, också proffs, och kommentarerna har allmänt taget varit rätt positiva. Instrumentet är välbyggt och ljudet är rätt skapligt men absolut inte perfekt. Jag fick nyligen tillbaka instrumentet och beslöt att titta på det igen och naturligtvis göra vissa justeringar. Jag vet att följande detaljer aldrig har justerats:

  • Bottenplattan har aldrig stämts genom inre slipning
  • Locket har aldrig stämts via inre slipning
  • Stallet har aldrig värmebehandlats
  • Stallet verkar rätt tjockt upptill baserat på mina nuvarande erfarenheter

Jag beslöt att justera bottenplattan och stallet men locket skulle inte röras denna gång.

IMGP1470

Altfiolen framifrån

IMGP1473

Altfiolen bakifrån

Om mätningarna

Alla mätningar har gjorts så att jag spelar en skala upp från låga C till D på A-strängen och därifrån ner igen till C. Vid inspelningen har jag använt en Logitech USB mikrofon som på intet sätt är perfekt men den fungerar inom det frekvensområde, 200 Hz – 6 kHz, som intresserar mig.

Fördelen med att spela en långsam skala jämfört med att göra ett knacktest på stallet är att man tydligare ser en specifik tons övertoner och framför allt amplitudförhållandet mellan övertonerna. De harmoniska övertonerna ger instrumentet dess klang.

C-strängen tonen F

Utgångsläget innan några som helst justeringar har gjorts visas i fig. 1.

Utgläge_F_C-str

Fig. 1 Tonen F på C-strängen spelad innan någon korrigering gjorts.

Notera hur övertonen F7 (den mittersta och högsta toppen i gropen mellan 2-3 kHz) ligger 33 dB under oktaven F4 mellan 300-400 Hz. Grundtonen F3 ligger itrakten av 180 Hz och den är svag.

Jag knackade runt på ringmoden på bottenplattan med altfiolen stämd och spelbar. Resultatet var att tvärnoden nere under stränghållaren hade en låh knackton jämfört med mitten av locket och tvärnoden uppe nära halsen (som även den var något låg).

Jag gjorde en första grovjustering genom att slipa tvärnoden nere 300 drag, uppe vid noden vid halsen 100 drag och noden vid C-bågarna 100 drav var. Provspelning efter slipningen gav en ”menlös” rätt tråkig ton utan sting. Situationen ordnade sig dock av sig själv antagligen till följd av att de slipade platserna svalnade och eventuellt ytlagret hårdnade. Efter 15 minuter kunde man tydligt höra en förbättring jämfört med utgångsläget.

Mätningar visade att området 3-5 kHz hade stigit med ca. 3 dB jämfört med grundregistret 200 – 1000 Hz.

Slipade ytterligare +100 drag efter några timmars paus.

Slipade noden vid C-bågarna i bottenplattan. Det här gav en försämring så att tonen blev torrare och strävare. Man skall helt tydligt vara försiktig med att röra området i trakten av C-bågarna. Dessa områden lämnas ofta relativt tjocka av byggare.

Balanserade f-hålens vingar ett första varv. Jag slipar vingen från insidan så att man får en jämnt sjunkande ton då man knackar från vingspetsen ner mot fiolens nedre del eller upp mot halsen. Min uppfattning är att en mjuk knacktonsövergång låter vingen koppla till ett större frekvensintervall utan att endast vissa toner förstärks.

Frovspelning visade att tonen på C- och G-strängarna fortfarande var något torr/sträv men utan den varma hartzighet jag vill ha. Lösningen är att slipa tvärs över nere vilket tar bort torrheten och ger lite mera värme och skärpa i tonen. Slipade 100 drag nere. Ett problem vid slipningen under stränghållaren är att den här fiolen har två frimärken som förstärker mittlimfogen. Eftersom frimärket låg mitt på den nod jag ville slipa slipade jag en lång ellips runt förstärkningsfrimärket. Resultatet var det förväntade och tonen blev bättre.

Jag tog nu loss stallet och tunnade av det något upptill. Resultatet är att vi flyttar stallets huvudresonans högre upp i frekvens vilket förstärker området 2-4 kHz som ger brillians åt tonen. Jag värmebehandlade stallet i en aluminiumkastrull så att jag lade stallet i kastrullen (torr!) och värmde den på full effekt på elspisen. Då temperaturen nådde 130 grader C flyttade jag bort kastrullen från plattan och lät stallet långsamt svalna i kastrullen. Sidan upp mot halsen värmdes mycket försiktigt endast så att stallet inte skulle slå sig. Temperaturgränsen 130 grader var antasgligen onödigt hög. Nästa gång värmer jag till 120 grader C eftersom dagens uppvärmning gav synliga färgförändringar.

Efter_värmebehandling

Fig. 2 Situationen efter värmebehandling av stallet.

Notera hur området 2-3 kHz har vuxit kraftigt, detta område ger ”must”, ”klang” åt den spelade grundtonen.

G- och D-strängarna kändes något svaga jämfört med C- och A-strängarna. Detta åtgärdades genom att försiktigt med stallet på plats vidga hålen i stallets hjärta. Hålet under D-strängen påverkar mera klangen i G-strängen och hålet under G-strängen påverkar klangen i D-strängen. Justeringen gav det förväntade resultatet.

Jag slipade ytterligare +100 drag i noden nere för att ge bättre klang i C- och G-strängarna.

Jag jämnade ut A-sidans inre vinge som lät låg nära stallet. En lätt slipning om 40 drag med liten magnet fixade detta.

Slutresultat:

Slutres_a-vinge

Fig. 3 Slutresultat för denna omgång.

Notera hur området 2-3 kH har stigit kraftigt jämfört med utgångspunkten.

 

 

 

 

Fiolbygge: Experiment med omöjligt material (7)

05/06/2014

Justering av bottenplattan och resonansen B1+

Då bottenplattan har ”rågraduerats” kommer de grundläggande resonanserna att ligga lite slumpmässigt och det är lätt att lura sig själv och tro att fiolen inte blev bra. Hutchins ansåg att en fiol för en solist bör ha ungefär följande grundresonanser och att resonanserna bör ligga i vettiga förhållanden till varandra.

Följande förhållanden anses gälla för ett solistinstrument:

B1+ – B1-    =   75 … 95 Hz

B1+ – A1     =   60 … 90 Hz

A1 –  B1-     =  0 … 16 Hz

Problemet är att det kan finnas flera tänkbara kandidater till B1- och B1+.  Vid intrimningen gäller det då att lyfta fram (öka amplituden) på de resonanser man vill ha och undertrycka de icke önskade resonanserna. Om vi betraktar utgångsläget för ”birds eye” Stradivariusen så startar vi från:

A1      =    462 Hz  (denna resonans bestäms av fiolens geometri och den ändras inte)

B1-    =    410 Hz dominerande topp samt 10 dB lägre 445 Hz

B1+   =    518 Hz dominerande samt 5 dB lägre 550 Hz

Om vi accepterar den nyss hoplimmade fiolen får vi som resultat:

B1+ – B1-   =   108 Hz vilket ligger utanför Hutchins gränser.

B1+  –  A1   =    56 Hz vilket är relativt lågt för ett solistinstrument.

A1  –  B1-   =   52 Hz vilket ligger skyhögt ovanför det önskade intervallet.

Vad kan man göra? Den normala metoden skulle antagligen vara att skära loss locket och försöka med omgraduering. Problemet är dock att resultatet rätt långt är fråga om tur. Extremt små tjockleksförändringar ger stor inverkan på resonanserna. Jag brukar justera med ca. 2 um d.v.s. 2/1000 mm arbetssteg. Eftersom en mätklocka i bästa fall mäter med noggrannheten 5/1000 mm så ligger justeringarna som är tydligt hörbara utanför våra mekaniska mätmöjligheter. Det här betyder samtidigt att en stor förändring där man tar loss locket och sicklar vissa punkter är en extremt grov metod för justering.

Då vi justerar lock och botten är det inte så mycket fråga om att flytta en resonanstopp som att förstärka de toppar vi är intresserade av utan att förstärka de oönskade topparna. Det visar sig att om vi justerar in ringmoden i lock och botten, se tidigare inlägg, så kommer automatiskt de önskade svängningsmoderna att förstärkas och då locket ”ringer” korrekt så kommer de svaga alternativa B1- och B1+ att dominera. Genom att justera ringmoden kommer vi alltså att börstärka B1- = ca. 445 Hz och B1+ = ca. 550 Hz.

Om vi lyckas med justeringen så kommer vi att få:

B1+  –  B1-   =   105 Hz vilket ligger utanför Hutchins gränser men rätt nära ett toppinstrument.

B1+  –  A1     =    88 Hz vilket motsvarar ett topp solistinstrument.

A1  –  B1+   =   17 Hz vilket ligger mycket nära värdet för ett toppinstrument.

Vi ser att om vi lyckas förstärka de svaga topparna så går instrumentet in som ett topp solistinstrument (om Hutchins klassificering gäller)! Notera att det inte i allmänhet är möjligt att förstärka den önskade toppen utan att den i viss mån flyttar plats. Toppens plats verkar dock i allmännhet inte flyttas mer än ca. +/- 10 Hz.

B1+_start_commented

Några identifierbara toppar i B1+ knackspektrum.

Artikel nummer fem i serien visar var det lönar sig att slipa.

Efter justering av bottenplattan, det största arbetet var att justera ringmoden uppe vid halsen, är resultatet:

B1+_final_commented

Slutresultat efter justering.

Notera!

Hela justeringsprocessen har gjorts med fiolen stämd och den har justerats i mycket små intervaller genom inre slipning  och den har provspelats mellan de olika justeringarna.

Justeringsprocessen för resonansen B1+ avslutas nu tillfälligt. Det är möjligt att jag återkommer och gör någon mindre korrektion senare då plattorna har härdat efter justeringen och fiolen har ”satt” sig.

Fiolen känns mycket bra då den provspelas.

Hur låter bottnens ringmod efter justeringen?
Bilden nedan visar vilka områden jag knackar på i ljudproven.

Bottom_plate_ring_mode_initial

Ljudprov #1:

Knackning mitt på ringmoden vid L ger ”referenston.  Därefer knackar jag från L utåt mot LL och den nedre klossen till vänster och sedan tillbaka till L. Jag går sedan tillbaka till L och knackar startreferens och sedan ut mot mot LR och den nedre klossen till höger och tillbaka till L.

Ljudprov #2:

Knackning mitt på ringmoden vid U ger ”referenston.  Därefer knackar jag från U utåt mot UL och den övre klossen till vänster och sedan tillbaka till U. Jag går sedan tillbaka till U och knackar startreferens och sedan ut mot mot UR och den övre klossen till höger och tillbaka till U.

Ljudprov #3:

Knackning mitt på bottenplattan nere vid största bredd, vid C-bågarna samt uppe vid största bredd.

Notera att justeringen av bottenplattan inte ännu är färdig. Man kan tydligt höra att nodlinjerna inte är i balans d.v.s. att tonen på mittlinjen inte är densamma som då man går ut mot klossarna. Bottenplattan kommer att justeras under de kommande veckorna i mycket små steg. Grundproblemet vid justering är att det tar kanske ett dygn för instrumentet att ”sätta sig” efter en justering.  För att inte göra stora dumheter lönar det sig att gå mycket långsamt framåt.

 

Fiolbygge: Experiment med omöjligt material (6)

05/06/2014

Några kommentarer om hur man justerar tonfärgen på en fiol

Många byggare är rädda för att göra locket alltför tunt.  Orsaken är arädsla för att få ett instrument som låter som om det skulle spelas i en tunna … mörkt, runt, dovt … inte bra. Orsaken till det här ljudet är att man har gjort området uppe vid halsen för tunt. Speciellt området i ändan av basbjälken uppe vid halsen är kritiskt. Extremt små förändringar här har en stor effekt på instrumentets tonfärg. Det är inget problem att höra förändringar då tjockleken ändras med 1/100 mm (beräknat utifrån mätt bearbetningshastighet). Notera att en mekanisk  mikrometerklocka mäter med kanske 5/100 mm d.v.s. vi hör utan problem en förändring som ligger långt under det vi mekaniskt kan mäta.

Ur byggarens synvinkel är situationen dock den att fiolens klangfärg är en följd av en balans (kompromiss) mellan mjukheten uppe vid halsen och mjukheten hos motsvarande kanal i ändan av basbjälken nere vid stränghållaren. Då man betraktar en fiol så ser man att ljudpinnen står osymmetriskt i förhållande till locket. Avståndet från ljudpinnen till den övre kanalen (vid halsen) är betydligt längre än avståndet till den nedre kanalen (vid stränghållaren). Det kortare avståndet från ljudpinnen till stränghållaren påverkar i högre grad högre frekvenser (kortare våglängd) och det längre avståndet från ljudpinnen till området uppe vid halsen påverkar lägre frekvenser. Ljudfärgen är en blandning av låga och höga harmoniska övertoner. Genom att justera övertonernas amplitud kan vi påverka tonfärgen.

Erfarenheten visar att:

  • Tonen kan göras mörkare genom att slipa kanalen uppe vid ändan av basbjälken. Slipningen kan göras på utsidan eller på insidan. Personligen slipar jag alltid på insidan eftersom man då inte gör åverkan på den lackerade ytan.
  • Om tonen uppfattas som alltför mörk kan det åtgärdas genom att slipa kanalen vid ändan av basbjälken bredvid stränghållaren.

Notera att effekten är mycket kraftig speciellt uppe vid halskanalen. Slipa mycket försiktigt och gör justeringen i små steg med provspelning mellan varje steg.

Justering av bottenplattan följer delvis samma regler men effekten är inte lika tydlig.

Sound_color_adjustment

Jutering av tonfärgen mörk/ljus. Slipning vid området ”Lighter” gör tonen ljusare och slipning vid området ”Darker” gör tonen mörkare. Effekten är kraftig gör alla justeringar i små steg.

Notera!

Experimentera på en ”skräpfiol”. Ge dig aldrig på ett värdefullt instrument. Många problem med äldre goda instrument kan bero på stallet, ljudpinnen står fel, någon limning har gått upp etc.

Fiolbygge: Experiment med omöjligt material (5)

03/06/2014

För att fiolen skall klinga korrekt måste lock och botten stämmas så att åtminstone ”ring”-moden och X-moden i både lock och botten svänger korrekt. Då man påbörjar justeringen är det rätt vanligt att lock/botten då man knackar på dem har ett dött ointressant ljud. Det här betyder helt enkelt att plattorna inte börjar svänga som de skall. Bilden nedan visar de områden i bottenplattan det lönar sig att justera på det strängade spelbara instrumentet genom inre slipning.

Bottom_plate_ring_mode_initial

Börja vid L och jämför med LL och LR. Om knacktonen för ett område är låg så slipar man ringmoden i den punkt som är låg. Då området vid L, LL samt LR börjar klinga gör man samma justering vid U, UL och UR. Knacktonen vid L kan sättas till t.ex. C# och vid U till F#. Kom ihåg att det inte går att backa! Gör förändringar i små steg och mät vid behov med t.ex. Audacity. Man ser enkelt vilken knacktonen är genom att spela in knacktonen vid L och U och sedan i spektret undersöka vilka de dominerande topparna är mellan t.ex. 400 och 800 Hz. Jämför med vad du uppfattar med örat.

Då man börjar få ringmodens nodlinjer inslipade nedtill och upptill blir bottenplattans knackton melodisk d.v.s. det är lätt att höra att plattan klingar. Om fiolen nu provspelas märker man att tonen är kraftig men relativt mjuk. Hur man lägger till must i tonen diskuteras i en senare artikel.

Om man kontrollerar tonen vid de fyra sidoklossarna märker man att tonen här i allmänhet är låg i förhållande till LL, LR, UL och UR. Det är lätt att flytta knacktonerna vid klossarna närmare de tidigare slipade områdena genom att slipa vid klossarna. Samma regel som tidigare gäller här. Då man slipar på en nodlinje så stiger knacktonen i den slipade punkten.

Vad händer med tonen då man justerar ringtonen i locket?

I en tidigare artikel visade jag hur Stradivariusens övertonsspektrum på de lösa strängarna hade högre amplitud inom området 1000 – 2000 Hz vilket gör att tonen lätt låter något nasal. En viss nasalitet är önskvärd, men inte alltför mycket. Då ringmoden i locket och i bottenplattan justerades så dämpades amplituden på övertonerna inom området 1000 – 2000 Hz betydligt (3 … 6 dB). Dämpningen är betydande, efter justeringen ligger effekten inom det kritiska området på 1/2 eller 1/4 av vad det var tidigare. Notera att skalan på Y-axeln är logaritmisk d.v.s. en förändring med 3 dB betyder en fördubbling. Å andra sidan är det mänskliga örat också logaritmiskt gällande känsligheten. Den minsta förändring örat pålitligt uppfattar är av storleksordningen 3 dB.

G-string_bottom_ring_mode

Notera hur den röda kurvan (efter justering) ligger betydligt lägre än den svarta (ojusterad) kurvan inom området 1000 – 2000 Hz. Lägg också märke till att övertonerna över 2000 Hz har förstärkts betydligt vilket ger en subjektivt ljusare klang.

Fiolbygge: Experiment med omöjligt material (4)

02/06/2014

Kontroll av lockets stämning

Då locket graduerades d.v.s. tjockleken justerades strävade jag efter att få de två viktigaste svängningsmoderna X-moden och ringmoden att fungera korrekt. Justeringen blir sällan exakt speciellt eftersom svängningsfrekvenserna förändras då man limmar fast locket i kroppen och då instrumentet lackas. Dagens projekt är att kontrollera vad som behöver efterjusteras. Jag visar fyra punkter som det lönar sig att kontrollera först, i ett senare skede justeras hela ringmoden så att nodlinjen får (ungefär) samma ton.

Top_tuning

Knackning på nodlinjen i de angivna områdena i bilden (nodlinjen är den punkt där knacktonen har den högsta tonhöjden) ger spektren i bilden nedan.

Jag spelade in knacktonerna från områdena i bilden med mikrofonen vinkelrätt mot locket ungefär vid stallets position. Vid knackningen använde jag gummihandtaget på Biltemas små diamantfilar. Resultatet blev:

tap_LL-LR-UL-UR

Knackspektra för de fyra områdena indikerade på fotot.

Området LR har en knackton som ligger tydligt lägre än det motsvarande området LL på andra sidan locket. Jag vill höja den här tonen till samma knackfrekvens som området LL. Jag kan höja nodens knackfrekvens genom att göra locket tunnare på nodlinjen. Locket tunnas av genom slipning från insidan. Alla förändringar görs i små steg eftersom varje förändring i viss mån smittar på de andra områdena. Då man studerar spektret ser man att de dominerande resonanstopparna ligger olika vilket tydligt hörs som olika knacktoner. Observera att du kan höja knacktonen i ringmoden men du kan inte sänka den. Slipa alltså inte för mycket eftersom det inte går att backa. Om man höjer tonen alltför mycket i en punkt kan det korrigeras genom att höja de övriga tre punkterna till motsvarande nivå. Det finns dock gränser för hur långt man vågar tunna av locket. Observera också att slipningen söndrar träytan och också värmer det slipade området vilket gör att effekten i viss mån överdrivs. Då man väntar en stund kommer den slipade ytans knackton att i viss mån backa tillbaka mot utgångsläget.

Senare arbetsskeden

Då lockets fyra hörn har stämts till ungefär samma knackton på nodlinjen justerar jag knacktonen precis invid sargen vid C-bågarna. De här områdena är ofta alltför tjocka vilket gör att ringnodens knackton ligger för lågt vid C-bågarna. Jag brukar inte sträva efter exakt samma knackton som i LL, LR, UL och UR utan något rätt nära.

Jag kan acceptera en högre knackton i UR än i LR och på motsvarande sätt UL i förhållande till LL. Om knacktonen i områdena UL och UR nära halsen är lägre än områdena LL och LR så är locket sannolikt för tjockt uppe vid halsen vilket kräver åtgärder.

Då ringmoden ringer korrekt, efter balansering/justering, är instrumentets ton extremt ”len” och klar. Man kan lägga till mera karaktär genom att se till att X-moden svänger korrekt. Mera om detta i en senare artikel.

Fiolbygge: Experiment med omöjligt material (3)

01/06/2014

Uppdaterat 1.6.2014.

Så här ser instrumentet ut i det här skedet. Färgen kommer att mörkna något eftersom jag kommer att lägga på ännu ett lager lack.

IMGP5756

Stradivarius #1 med sarger, hals och botten i ”birds eyes” lönn.

Instrumentet sett underifrån. Notera den extrema flammigheten som samtidigt gör gradueringen av bottenplattan ”intressant” och utmanande 😉 .

IMGP5757

De viktigaste resonanserna då ny ljudpinne av korrekt längd är insatt.

B1+    =    464 Hz   (417 Hz)

Den önskade resonansen är sannolikt 464 Hz men det finns en betydligt kraftigare resonans vid 417 Hz (+9 dB). Min uppfattning är att den svagare resonansen är den sökta B1+. Genom att slipa bottenplattans resonanser kommer resonansen vid 464 Haz att förstärkas.

B1-    =    509 Hz  (540 Hz)

Man ser att toppen vid 509 Hz är en kombination av två toppar. Det finns en betydligt svagare topp i trakten av 530 … 540 Hz. Uppgiften blir nu att vid trimningen locka fram den här högre toppen.

A1    =   475 Hz

Toppen är relativt svag.

B0    =  246 Hz

B0 måste höjas genom att modifiera greppbrädan.

Stränghållare  =  117 Hz

Denna resonans höjs till 135 Hz för att matcha den önskade A0 frekvensen. Stränghållarresonansen höjs genom att gröpa ur stränghållaren underifrån.

Fiolbygge: Experiment med omöjligt material (2)

01/06/2014

Fiolen är nu lackar och preliminärt hoplimmad för en första justeringsomgång. Preliminärt eftersom jag märkte att locket inte ligger exakt som jag vill ha det 😦 . Limningsfelet betyder att jag har en god orsak att ta loss locket och mäta tjockleksförändringarna efter den inre justeringen. Skulle limningen ha lyckats skulle jag nog inte skära upp ett fungerande instrument.

Igår gjorde jag ett stall till fiolen, tills vidare helt ojusterat samt en preliminär ljudpinne … som visade sig vara kanske 1 mm för kort. Jag blir alltså tvungen att göra en ny ljudpinne innan den egentliga justeringen tar vid. Innan justeringen mäter jag egenskaperna hos instrumentet med hjälp av programmet Audacity. Den första mätningen visar instrumentets respons på tomma strängar GDAE jämfört med min Guarnerius #1. Guarnerius #1 har ett bra ljud och jag använder därför det instrumentet som referens då jag justerar in den nya Stradivariusen.

Strad#1_starting_point_gdae

Strad#1 är den svarta kurvan. Min Guarnerius #1 är den röda kurvan. Notera hur Guarneriusen ligger betydligt lägre i det nasala området mellan 1000 Hz och 2000 Hz. Den nya fiolen har en extremt ”mjuk” ton som sannolikt beror på att kanalen mellan basbjälken och halsen är alltför tunn i förhållande till motsvarande kanal vid stränghållaren. Då området vid stränghållaren görs tunnare kommer tonen att ljusna.

Ovanstående kurva som består av övertonsspektret från alla de fyra lösa strängarna ger en viss bild av hur spektren ser ut men det är svårt att tolka bilden till följd av för mycket detaljer. Följande bild visar spektret från Gsträngarna på Stardiavarius #1 (svart) och Guarnerius #1 (röd).

Övertonsspektret för Strad #1 på G-strängen jämfört med motsvarande spektrum från Guarnerius #1.

Övertonsspektret för Strad #1 på G-strängen jämfört med motsvarande spektrum från Guarnerius #1.

Motsvarande spektrum för den öppna D-trängen nedan.

Strad1_guar1_d-string

Strad#1 och Guarnerius#1 öppen G-sträng.

Strad1_guar1_A-string

Stradivarius #1 och Guarnerius #1 öppen A-sträng.

Strad1_guar1_E-string

Öppen E-sträng. Strad (röd) och Guarnerius (svart).

Det allmänna intrycket av instrumentet innan justering utgående från spektren är att de låga strängarna har en något bättre respons (3 – 6 dB). Övertonsspektret för Stradivarius är sannolikt onödigt kraftigt inom området 1000 – 2000 Hz, det nasala området.

strad1_full_no_adjustments

Stradivarius #1 fullt knackspektrum utan justeringar. Det är lätt att se att en hel del grundläggande resonanser ligger fel och måste justeras.

Provspelning visar att framför allt G-strängen är onödigt ”rund” och den låter lite som om man skulle spela i en tunna. Dett problem tode vara rätt enkelt att eliminera.

 

Att stämma en stråke

14/05/2014

Maestronet diskuteras hur en stråke kan ”stämmas” så att den passar ihop med en fiol på bästa möjliga sätt. Vid första påseendet verkar frågan ganska irrelevant. Vad skulle man kunna stämma på en stråke?

Det finns dock en liten detaljs som tyder på att alla stråkar inte är skapade likvärdiga. Vilken är orsaken till att helt vettiga violinister ibland är villiga att i värsta fall betala 10000 – 20000 Euro för en riktigt bra stråke? Om alla stråkar skulle producera ljud på samma sätt så vore t.ex. 10000 Euro för en toppstråke ett absurt pris för ett så enkelt verktyg. Vi vet dock att toppstråkar går att sälja … det finns alltså något prisvärt.

Materialet som används i en stråke har naturligtvis en stor betydelse för hur en stråke fungerar. Å andra sidan är det ett känt faktum att ett riktigt bra stråkmaterial inte är en garanti för att resultatet blir en bra stråke. Hantverket och hur man skär till en stråke har också betydelse. Erfarna stråktillverkare verkar i viss mån stämma sina stråkar enligt användarens önskemål. Nedanstående video visar hur en stråke tillverkas.

Videon visar hur stråkmakaren på slutet försiktigt tunnar av stråken och klangen verkar ändra.

På Maestronet presenterades följande schematiska metod för stämning av en stråke, precis som vid stämning av fiolstall samt lock och botten tas extremt små mängder material bort (observera att områdena är grovt angivna) :

Området från spetsen till ca. 100 mm påverkar E-strängen.

Området 100 – 220 mm påverkar A-strängen.

Området 200 – 450 mm påverkar D-strängen.

Resten av stråken påverkar G-strängen.

Om t.ex. D-strängen låter dämpad så tar man loss froschen och skrapar bort lite material från undersidan av stråkstången där det inte syns.
Om t.ex. en not har en metallisk biklang så notera var tonen ligger och skrapa försiktigt på motsvarande punkt på stråken.

Vad händer

Då stråken dras över strängen kommer den turvis att ”klibba” vid strängen och turvis att glida med låg friktion. Då samma process upprepas snabbt kommer en sågtandsliknande triangelvåg att uppkomma som sedan filtreras i fiolens stall och i fiolkroppen. Då strängen börjar röra sig så kommer dess rörelse att påverka hurudan friktionen mellan strängen och stråken är vi får alltså en återkoppling från strängen. Det här är den konventionella förklaringen. Det är dock fysikaliskt sett självklart att varje gång stråken hugger/släpper så kommer motsvarande kraft som överförs i sidled till strängen att leda till vibrationer i stråkens längdled och vibrationerna är antagligen stora eftersom krafterna är desamma som på strängen!

Eftersom stråken är elastisk och den har massa så kommer den att börja vibrera. Det verkar naturligt att vibrationer med låg amplitud och hög frekvens kommer att genereras nära stråkens spets. Lägre frekvenser med större amplitud genererar vibrationer över en allt större del av stråken.

Om den drivande frekvensen är densamma som tonen violinisten vill spela så är allt sannolikt som det skall vara. Om däremot stråkresonansen råkar vara svag på den spelade tonen så kan någon närliggande stråkresonans bli betydelsefull vilket kan leda t.ex till icke önskade svävningar i den genererade tonen. Eftersom fjädern/massan i sptsen av stråken antagligen är icke linjär så verkar det troligt att frekvenser i strängen och i stråken ev. också genererar skillnads- och summatoner som eventuellt kan bli hörbara (distorsion/brus).

Harding fiddle spectrum when the open D-string is played

Harding fiddle spectrum when the open D-string is played.

Spektrum av en Hardangerfiol då en öppen D-sträng spelas.

Harding fiddle bow spectrum when an open D-string is played

Harding fiddle bow spectrum when an open D-string is played

Stråkens spektrum mätt med kontaktmikrofon då samma öppna D-sträng spelas. Notera att vi eventuellt får extra högfrekvensförstärkning (boost) i trakten av 3000 Hz. Stråken kan mycket väl ha en stor betydelse för klarhet och hur fiolen bär i en stor sal!


Pointman's

A lagrange point in life

THE HOCKEY SCHTICK

Lars Silén: Reflex och Spegling

NoTricksZone

Lars Silén: Reflex och Spegling

Big Picture News, Informed Analysis

Canadian journalist Donna Laframboise. Former National Post & Toronto Star columnist, past vice president of the Canadian Civil Liberties Association.

JoNova

Lars Silén: Reflex och Spegling

Climate Audit

by Steve McIntyre

Musings from the Chiefio

Techno bits and mind pleasers

Bishop Hill

Lars Silén: Reflex och Spegling

Watts Up With That?

The world's most viewed site on global warming and climate change

TED Blog

The TED Blog shares news about TED Talks and TED Conferences.

Larsil2009's Blog

Lars Silén: Reflex och Spegling

%d bloggare gillar detta: