Archive for the ‘Musik’ Category

Experiment med konvertering av musik till noter

18/02/2015

Bakgrund

Min äldre bror stötte nyligen på ett nytt intressant programspråk ”Julia” som har influerats av Python, Matlab och många andra programmeringsspråk. Julia har en relativt intuitiv syntax vilket betyder att det är rätt enkelt att lära sig språket då man har använt andra programmeringsspråk. Julia påminner om språket Python men Julia kan vara tiotals gånger snabbare … nästan lika snabbt som kompilerad c-kod trots att Julia är ett tolkat språk med alla de fördelar detta medför (bl.a. enkelt att skriva program stegvis och tista medan man skriver).

Problemet att ur spelad musik har intresserat mig länge men jag har inte kommit mig för att skriva verktyg. Julia råkade nu bli den faktor som gjorde att jag började experimentera med notgenerering för att samtidigt lära mig språket Julia.

Det här kommer antagligen att bli en serie artiklar där olika aspekter av problemet behandlas … och det finns inga garantier för att slutresultatet på riktigt blir användbart.

Existerande hjälpmedel

Tanken är inte att skriva allt som behövs själv utan existerande programkod kommer att användas. Följande program används för närvarande.

  • Programmet Audacity används för inspelning. I samband med inspelningen normaliseras ljudfilen till standardamplitud eftersom detta förenklar analysen.
  • Julia används för programmeringen och Julia innehåller de FFT (fast fourier transform) rutiner som behövs för att plocka ut toner ur ljudmassan.
  • Programmet LilyPond används för att generera noter

Konvertering av ljudfilen till musikaliska toner

Det första programmet extract_notes.jl läser block om 8152 ljudsampel från ljudfilen som är samplad i CD-kvalité d.v.s. 44100 Hz. Ett datablock motsvarar då ungefär 200 ms ljud och den teoretiska upplösningen i spektret som skapas med FFT är ungefär 5 Hz.

Tanken är att analysera hela filen i 200 ms block. blocken/tonerna kan senare kombineras till något som motsvarar verkliga noter men detta är något för framtiden. Det är självklart att inte endast en ton utan en hel serie toner kommer att hittas i varje tonblock eftersom en fiolton innehåller en lång serie övertoner. Hur jag väljer att utnyttja övertonsserierna är också ett problem som lämnas för framtida optimering.

Programmet extract_notes.jl skapar en textfil som innehåller de noter programmet hittade samt amplituden för de olika tonerna (tonstyrkan). Textfilen ser för närvarande inte vacker ut:

Length:605696
Längd i sekunder:13.734603174603174
N ASCIIString[”d'”,”a””,”a”'”,”c”””,”d”””,”?”,”?”,”?”,”?”,”?”,”?”, … ,”?”,”?”,”?”,”?”,”?”]
A [-31.890321498989003,-30.634769023040928,-32.27245706229339,-30.018825559930626,-29.475444684452142,-9999.0,-9999.0, … , -9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0]
N ASCIIString[”d'”,”d””,”a””,”c”””,”d”””,”?”,”?”,”?”,”?”,”?”,”?”,”?”,”?”,”?”, … , ”?”,”?”,”?”,”?”,”?”,”?”]

o.s.v.

En rad som börjar med ”N” innehåller detekterade noter t.ex. ” d’ ”  , ” a” ” . ”?” betyder att ingen not har hittas för denna position i tabellen.

En rad som börjar med ”A” innehåller amplituder. En amplitud med värdet -9999.0 betyder att ingen amplitud finns för denna not.

Notnotationen är den som används i LilyPond.

Generering av noter

För att generera noter behöver vi nu endast plocka ut notvärdena ur tabellen och skriva ut noterna (de harmoniska övertonerna) som ett ackord i LilyPond.

Ett ackord i LilyPond betecknas med:

< not0 not1 not2 … >

Då vi plockar ut noterna får vi:

<   d’    a”   a”’  c””  d”” >

Vi kan titta på noterna genom att helt enkelt lägga till LilyPond startkod och slutkod så att man får en LilyPondfil som kan kompileras. Jag har skrivit ett separat litet program som läser textfilen ovan och konverterar den till kompilerbar LilyPond-kod. Programmet heter process_notes.jl .

Startkoden är:

\version  ”2.16.2”
{

Slutkoden är:

}

Resultatet för melodin ”Gubben noak” blev:

\version  ”2.16.2”
{< d’  a”  a”’  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  fis”’  a”’ >
< d’  dis’  d”  a”  fis”’ >
< d’  d”  a”  a”’  c”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  fis”’  a”’ >
< cis’  d’  d”  a”  c”” >
< d’  d”  a”  fis”’  c”” >
< d’  d”  a”  a”’  c”” >
< d’  d”  a”  fis”’  a”’ >
< d’  dis’  d”  a”  a”’ >
< d’  dis’  d”  a”  a”’ >
< fis’  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< e’  g”’ >
< e’  e”  b”  g”’  gis”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< dis’  e’  e”  b”  g”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  e”’  gis”’ >
< dis’  e’  e”  b”  gis”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< g’  d”’  g”’  b”’  d”” >
< g’  d”’  g”’  b”’  d”” >
< g’  d”’  g”’  b”’  d”” >
< g’  d”’  g”’  b”’  d”” >
< fis’  g’  cis”’ >
< fis’  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  cis”’  fis”’  ais”’  cis”” >
< fis’  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  cis”’  cis”” >
< e’  e”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  gis”’  b”’ >
< e’  e”  gis”’  b”’  cis”” >
< e’  e”  gis”’  b”’  cis”” >
< e’  e”  gis”’  b”’  cis”” >
< e’  e”  gis”’  b”’  cis”” >
< cis’  d’ >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  a” >

Den här filen kan nu LilyPond processa:

lilypond mellanresultat.ly

Resultatet blir en pdf-fil som heter mellanresultat.pdf .

ofiltrerad

Rå notutskrift då programmen har analyserat början av ”Gubben Noak”.

Mängden av toner är en följd av att en fiolton är mycket övertonsrik och spektret således inte innehåller endast en ton utan en mycket lång rad harmoniska och icke harmoniska övertoner.

Då man betraktar bilden så ser man en hel del dubletter som ligger på ett halvt tonstegs avstånd från varandra. Detta betyder inte att tonen är skärande dissonant utan på att ifrågavarande ton är relativt kraftig och spektraltoppen relativt bred. Resultatet är att analysprogrammet kommer att få flera träffar vid en ton. Frågan blir då hur man bäst filtrerar bort de oönskade tonerna?

Svaret på frågan får vila till nästa artikel 🙂 .

Fiolbygge: Experiment med omöjligt material (8)

06/06/2014

Att mäta attack

Det är ett känt faktum att det för en violinist har en stor betydelse hur snabbt, och pålitligt, tonen tänder i instrumentet. Om tonen tänder långsamt tvingas violinisten hela tiden tänka på detta och accentuera varje ton. Om instrumentet tänder genast och distinkt kan mera, mental, energi användas till att göra musik i stället för att medvetet jobba med att få tonen att tända distinkt.

Efter diskussion med min son Sebastian kom vi fram till att pizzicato borde vara en enkel och relativt reproducerbar metod för att mäta instrumentets respons. Vid pizzicato (knäppning) matas en extremt kort puls ljudenergi in i instrumentet. Vi kan sedan t.ex. använda fördröjningen mellan det första detekterade ljudet och maximinivån som ett mått på instrumentets respons. Det verkar rätt självklart att fördröjningen bör vara en funktion av hur instrumentets resonanser ligger men också en funktion av plattornas massor. Ju tyngre plattor desto långsammare kommer plattornas svängningar igång.

Nedan visas tre inspelningar med Audacity. Den första bilden visar Strad #1 som jag jobbar med för tillfället. Bild två är en tysk altfiol Edmund Paulus och det tredje instrumentet är min Guarnerius #1. Experimentet visar klart att Edmund Paulus med tjocka plattor kommer igång mycket långsammare än de båda fiolerna. Notera också hur de tjocka plattorna i Paulus altfiol har mycket högre dämpning än de båda fiolerna. Tonen försvinner mycket snabbare  i altfiolen än i fiolerna.

Strad1_g-string_pizzicato

Stradivarius ”birds eyes” pizzicato på G-strängen. Tonen når maxvolym på ca. 5 ms.

Paulus_g-string_pizzicato

Altfiol Edmund Paulus Markneukirchen pizzicato på G-strängen. Tonen når maxvolym på ca. 18 ms d.v.s. två till tre gånger långsammare än fiolerna.

Guarnerius1_G-strin_pizzicato

Guarnerius #1 pizzicato på G-strängen. Tonen når maxvolym på 5 – 8 ms.

Jag är intresserad av synpunkter på hur det lönar sig att mäta instrumentets respons på något enkelt sätt. Om du känner till något annat enkelt sätt att mäta en fiols respons så kommentera gärna.

 

 

Fiolbygge: Experiment med omöjligt material (7)

05/06/2014

Justering av bottenplattan och resonansen B1+

Då bottenplattan har ”rågraduerats” kommer de grundläggande resonanserna att ligga lite slumpmässigt och det är lätt att lura sig själv och tro att fiolen inte blev bra. Hutchins ansåg att en fiol för en solist bör ha ungefär följande grundresonanser och att resonanserna bör ligga i vettiga förhållanden till varandra.

Följande förhållanden anses gälla för ett solistinstrument:

B1+ – B1-    =   75 … 95 Hz

B1+ – A1     =   60 … 90 Hz

A1 –  B1-     =  0 … 16 Hz

Problemet är att det kan finnas flera tänkbara kandidater till B1- och B1+.  Vid intrimningen gäller det då att lyfta fram (öka amplituden) på de resonanser man vill ha och undertrycka de icke önskade resonanserna. Om vi betraktar utgångsläget för ”birds eye” Stradivariusen så startar vi från:

A1      =    462 Hz  (denna resonans bestäms av fiolens geometri och den ändras inte)

B1-    =    410 Hz dominerande topp samt 10 dB lägre 445 Hz

B1+   =    518 Hz dominerande samt 5 dB lägre 550 Hz

Om vi accepterar den nyss hoplimmade fiolen får vi som resultat:

B1+ – B1-   =   108 Hz vilket ligger utanför Hutchins gränser.

B1+  –  A1   =    56 Hz vilket är relativt lågt för ett solistinstrument.

A1  –  B1-   =   52 Hz vilket ligger skyhögt ovanför det önskade intervallet.

Vad kan man göra? Den normala metoden skulle antagligen vara att skära loss locket och försöka med omgraduering. Problemet är dock att resultatet rätt långt är fråga om tur. Extremt små tjockleksförändringar ger stor inverkan på resonanserna. Jag brukar justera med ca. 2 um d.v.s. 2/1000 mm arbetssteg. Eftersom en mätklocka i bästa fall mäter med noggrannheten 5/1000 mm så ligger justeringarna som är tydligt hörbara utanför våra mekaniska mätmöjligheter. Det här betyder samtidigt att en stor förändring där man tar loss locket och sicklar vissa punkter är en extremt grov metod för justering.

Då vi justerar lock och botten är det inte så mycket fråga om att flytta en resonanstopp som att förstärka de toppar vi är intresserade av utan att förstärka de oönskade topparna. Det visar sig att om vi justerar in ringmoden i lock och botten, se tidigare inlägg, så kommer automatiskt de önskade svängningsmoderna att förstärkas och då locket ”ringer” korrekt så kommer de svaga alternativa B1- och B1+ att dominera. Genom att justera ringmoden kommer vi alltså att börstärka B1- = ca. 445 Hz och B1+ = ca. 550 Hz.

Om vi lyckas med justeringen så kommer vi att få:

B1+  –  B1-   =   105 Hz vilket ligger utanför Hutchins gränser men rätt nära ett toppinstrument.

B1+  –  A1     =    88 Hz vilket motsvarar ett topp solistinstrument.

A1  –  B1+   =   17 Hz vilket ligger mycket nära värdet för ett toppinstrument.

Vi ser att om vi lyckas förstärka de svaga topparna så går instrumentet in som ett topp solistinstrument (om Hutchins klassificering gäller)! Notera att det inte i allmänhet är möjligt att förstärka den önskade toppen utan att den i viss mån flyttar plats. Toppens plats verkar dock i allmännhet inte flyttas mer än ca. +/- 10 Hz.

B1+_start_commented

Några identifierbara toppar i B1+ knackspektrum.

Artikel nummer fem i serien visar var det lönar sig att slipa.

Efter justering av bottenplattan, det största arbetet var att justera ringmoden uppe vid halsen, är resultatet:

B1+_final_commented

Slutresultat efter justering.

Notera!

Hela justeringsprocessen har gjorts med fiolen stämd och den har justerats i mycket små intervaller genom inre slipning  och den har provspelats mellan de olika justeringarna.

Justeringsprocessen för resonansen B1+ avslutas nu tillfälligt. Det är möjligt att jag återkommer och gör någon mindre korrektion senare då plattorna har härdat efter justeringen och fiolen har ”satt” sig.

Fiolen känns mycket bra då den provspelas.

Hur låter bottnens ringmod efter justeringen?
Bilden nedan visar vilka områden jag knackar på i ljudproven.

Bottom_plate_ring_mode_initial

Ljudprov #1:

Knackning mitt på ringmoden vid L ger ”referenston.  Därefer knackar jag från L utåt mot LL och den nedre klossen till vänster och sedan tillbaka till L. Jag går sedan tillbaka till L och knackar startreferens och sedan ut mot mot LR och den nedre klossen till höger och tillbaka till L.

Ljudprov #2:

Knackning mitt på ringmoden vid U ger ”referenston.  Därefer knackar jag från U utåt mot UL och den övre klossen till vänster och sedan tillbaka till U. Jag går sedan tillbaka till U och knackar startreferens och sedan ut mot mot UR och den övre klossen till höger och tillbaka till U.

Ljudprov #3:

Knackning mitt på bottenplattan nere vid största bredd, vid C-bågarna samt uppe vid största bredd.

Notera att justeringen av bottenplattan inte ännu är färdig. Man kan tydligt höra att nodlinjerna inte är i balans d.v.s. att tonen på mittlinjen inte är densamma som då man går ut mot klossarna. Bottenplattan kommer att justeras under de kommande veckorna i mycket små steg. Grundproblemet vid justering är att det tar kanske ett dygn för instrumentet att ”sätta sig” efter en justering.  För att inte göra stora dumheter lönar det sig att gå mycket långsamt framåt.

 

Fiolbygge: Experiment med omöjligt material (6)

05/06/2014

Några kommentarer om hur man justerar tonfärgen på en fiol

Många byggare är rädda för att göra locket alltför tunt.  Orsaken är arädsla för att få ett instrument som låter som om det skulle spelas i en tunna … mörkt, runt, dovt … inte bra. Orsaken till det här ljudet är att man har gjort området uppe vid halsen för tunt. Speciellt området i ändan av basbjälken uppe vid halsen är kritiskt. Extremt små förändringar här har en stor effekt på instrumentets tonfärg. Det är inget problem att höra förändringar då tjockleken ändras med 1/100 mm (beräknat utifrån mätt bearbetningshastighet). Notera att en mekanisk  mikrometerklocka mäter med kanske 5/100 mm d.v.s. vi hör utan problem en förändring som ligger långt under det vi mekaniskt kan mäta.

Ur byggarens synvinkel är situationen dock den att fiolens klangfärg är en följd av en balans (kompromiss) mellan mjukheten uppe vid halsen och mjukheten hos motsvarande kanal i ändan av basbjälken nere vid stränghållaren. Då man betraktar en fiol så ser man att ljudpinnen står osymmetriskt i förhållande till locket. Avståndet från ljudpinnen till den övre kanalen (vid halsen) är betydligt längre än avståndet till den nedre kanalen (vid stränghållaren). Det kortare avståndet från ljudpinnen till stränghållaren påverkar i högre grad högre frekvenser (kortare våglängd) och det längre avståndet från ljudpinnen till området uppe vid halsen påverkar lägre frekvenser. Ljudfärgen är en blandning av låga och höga harmoniska övertoner. Genom att justera övertonernas amplitud kan vi påverka tonfärgen.

Erfarenheten visar att:

  • Tonen kan göras mörkare genom att slipa kanalen uppe vid ändan av basbjälken. Slipningen kan göras på utsidan eller på insidan. Personligen slipar jag alltid på insidan eftersom man då inte gör åverkan på den lackerade ytan.
  • Om tonen uppfattas som alltför mörk kan det åtgärdas genom att slipa kanalen vid ändan av basbjälken bredvid stränghållaren.

Notera att effekten är mycket kraftig speciellt uppe vid halskanalen. Slipa mycket försiktigt och gör justeringen i små steg med provspelning mellan varje steg.

Justering av bottenplattan följer delvis samma regler men effekten är inte lika tydlig.

Sound_color_adjustment

Jutering av tonfärgen mörk/ljus. Slipning vid området ”Lighter” gör tonen ljusare och slipning vid området ”Darker” gör tonen mörkare. Effekten är kraftig gör alla justeringar i små steg.

Notera!

Experimentera på en ”skräpfiol”. Ge dig aldrig på ett värdefullt instrument. Många problem med äldre goda instrument kan bero på stallet, ljudpinnen står fel, någon limning har gått upp etc.

Fiolbygge: Experiment med omöjligt material (5)

03/06/2014

För att fiolen skall klinga korrekt måste lock och botten stämmas så att åtminstone ”ring”-moden och X-moden i både lock och botten svänger korrekt. Då man påbörjar justeringen är det rätt vanligt att lock/botten då man knackar på dem har ett dött ointressant ljud. Det här betyder helt enkelt att plattorna inte börjar svänga som de skall. Bilden nedan visar de områden i bottenplattan det lönar sig att justera på det strängade spelbara instrumentet genom inre slipning.

Bottom_plate_ring_mode_initial

Börja vid L och jämför med LL och LR. Om knacktonen för ett område är låg så slipar man ringmoden i den punkt som är låg. Då området vid L, LL samt LR börjar klinga gör man samma justering vid U, UL och UR. Knacktonen vid L kan sättas till t.ex. C# och vid U till F#. Kom ihåg att det inte går att backa! Gör förändringar i små steg och mät vid behov med t.ex. Audacity. Man ser enkelt vilken knacktonen är genom att spela in knacktonen vid L och U och sedan i spektret undersöka vilka de dominerande topparna är mellan t.ex. 400 och 800 Hz. Jämför med vad du uppfattar med örat.

Då man börjar få ringmodens nodlinjer inslipade nedtill och upptill blir bottenplattans knackton melodisk d.v.s. det är lätt att höra att plattan klingar. Om fiolen nu provspelas märker man att tonen är kraftig men relativt mjuk. Hur man lägger till must i tonen diskuteras i en senare artikel.

Om man kontrollerar tonen vid de fyra sidoklossarna märker man att tonen här i allmänhet är låg i förhållande till LL, LR, UL och UR. Det är lätt att flytta knacktonerna vid klossarna närmare de tidigare slipade områdena genom att slipa vid klossarna. Samma regel som tidigare gäller här. Då man slipar på en nodlinje så stiger knacktonen i den slipade punkten.

Vad händer med tonen då man justerar ringtonen i locket?

I en tidigare artikel visade jag hur Stradivariusens övertonsspektrum på de lösa strängarna hade högre amplitud inom området 1000 – 2000 Hz vilket gör att tonen lätt låter något nasal. En viss nasalitet är önskvärd, men inte alltför mycket. Då ringmoden i locket och i bottenplattan justerades så dämpades amplituden på övertonerna inom området 1000 – 2000 Hz betydligt (3 … 6 dB). Dämpningen är betydande, efter justeringen ligger effekten inom det kritiska området på 1/2 eller 1/4 av vad det var tidigare. Notera att skalan på Y-axeln är logaritmisk d.v.s. en förändring med 3 dB betyder en fördubbling. Å andra sidan är det mänskliga örat också logaritmiskt gällande känsligheten. Den minsta förändring örat pålitligt uppfattar är av storleksordningen 3 dB.

G-string_bottom_ring_mode

Notera hur den röda kurvan (efter justering) ligger betydligt lägre än den svarta (ojusterad) kurvan inom området 1000 – 2000 Hz. Lägg också märke till att övertonerna över 2000 Hz har förstärkts betydligt vilket ger en subjektivt ljusare klang.

Fiolbygge: Experiment med omöjligt material (4)

02/06/2014

Kontroll av lockets stämning

Då locket graduerades d.v.s. tjockleken justerades strävade jag efter att få de två viktigaste svängningsmoderna X-moden och ringmoden att fungera korrekt. Justeringen blir sällan exakt speciellt eftersom svängningsfrekvenserna förändras då man limmar fast locket i kroppen och då instrumentet lackas. Dagens projekt är att kontrollera vad som behöver efterjusteras. Jag visar fyra punkter som det lönar sig att kontrollera först, i ett senare skede justeras hela ringmoden så att nodlinjen får (ungefär) samma ton.

Top_tuning

Knackning på nodlinjen i de angivna områdena i bilden (nodlinjen är den punkt där knacktonen har den högsta tonhöjden) ger spektren i bilden nedan.

Jag spelade in knacktonerna från områdena i bilden med mikrofonen vinkelrätt mot locket ungefär vid stallets position. Vid knackningen använde jag gummihandtaget på Biltemas små diamantfilar. Resultatet blev:

tap_LL-LR-UL-UR

Knackspektra för de fyra områdena indikerade på fotot.

Området LR har en knackton som ligger tydligt lägre än det motsvarande området LL på andra sidan locket. Jag vill höja den här tonen till samma knackfrekvens som området LL. Jag kan höja nodens knackfrekvens genom att göra locket tunnare på nodlinjen. Locket tunnas av genom slipning från insidan. Alla förändringar görs i små steg eftersom varje förändring i viss mån smittar på de andra områdena. Då man studerar spektret ser man att de dominerande resonanstopparna ligger olika vilket tydligt hörs som olika knacktoner. Observera att du kan höja knacktonen i ringmoden men du kan inte sänka den. Slipa alltså inte för mycket eftersom det inte går att backa. Om man höjer tonen alltför mycket i en punkt kan det korrigeras genom att höja de övriga tre punkterna till motsvarande nivå. Det finns dock gränser för hur långt man vågar tunna av locket. Observera också att slipningen söndrar träytan och också värmer det slipade området vilket gör att effekten i viss mån överdrivs. Då man väntar en stund kommer den slipade ytans knackton att i viss mån backa tillbaka mot utgångsläget.

Senare arbetsskeden

Då lockets fyra hörn har stämts till ungefär samma knackton på nodlinjen justerar jag knacktonen precis invid sargen vid C-bågarna. De här områdena är ofta alltför tjocka vilket gör att ringnodens knackton ligger för lågt vid C-bågarna. Jag brukar inte sträva efter exakt samma knackton som i LL, LR, UL och UR utan något rätt nära.

Jag kan acceptera en högre knackton i UR än i LR och på motsvarande sätt UL i förhållande till LL. Om knacktonen i områdena UL och UR nära halsen är lägre än områdena LL och LR så är locket sannolikt för tjockt uppe vid halsen vilket kräver åtgärder.

Då ringmoden ringer korrekt, efter balansering/justering, är instrumentets ton extremt ”len” och klar. Man kan lägga till mera karaktär genom att se till att X-moden svänger korrekt. Mera om detta i en senare artikel.

Fiolbygge: Experiment med omöjligt material (3)

01/06/2014

Uppdaterat 1.6.2014.

Så här ser instrumentet ut i det här skedet. Färgen kommer att mörkna något eftersom jag kommer att lägga på ännu ett lager lack.

IMGP5756

Stradivarius #1 med sarger, hals och botten i ”birds eyes” lönn.

Instrumentet sett underifrån. Notera den extrema flammigheten som samtidigt gör gradueringen av bottenplattan ”intressant” och utmanande 😉 .

IMGP5757

De viktigaste resonanserna då ny ljudpinne av korrekt längd är insatt.

B1+    =    464 Hz   (417 Hz)

Den önskade resonansen är sannolikt 464 Hz men det finns en betydligt kraftigare resonans vid 417 Hz (+9 dB). Min uppfattning är att den svagare resonansen är den sökta B1+. Genom att slipa bottenplattans resonanser kommer resonansen vid 464 Haz att förstärkas.

B1-    =    509 Hz  (540 Hz)

Man ser att toppen vid 509 Hz är en kombination av två toppar. Det finns en betydligt svagare topp i trakten av 530 … 540 Hz. Uppgiften blir nu att vid trimningen locka fram den här högre toppen.

A1    =   475 Hz

Toppen är relativt svag.

B0    =  246 Hz

B0 måste höjas genom att modifiera greppbrädan.

Stränghållare  =  117 Hz

Denna resonans höjs till 135 Hz för att matcha den önskade A0 frekvensen. Stränghållarresonansen höjs genom att gröpa ur stränghållaren underifrån.

Fiolbygge: Experiment med omöjligt material (2)

01/06/2014

Fiolen är nu lackar och preliminärt hoplimmad för en första justeringsomgång. Preliminärt eftersom jag märkte att locket inte ligger exakt som jag vill ha det 😦 . Limningsfelet betyder att jag har en god orsak att ta loss locket och mäta tjockleksförändringarna efter den inre justeringen. Skulle limningen ha lyckats skulle jag nog inte skära upp ett fungerande instrument.

Igår gjorde jag ett stall till fiolen, tills vidare helt ojusterat samt en preliminär ljudpinne … som visade sig vara kanske 1 mm för kort. Jag blir alltså tvungen att göra en ny ljudpinne innan den egentliga justeringen tar vid. Innan justeringen mäter jag egenskaperna hos instrumentet med hjälp av programmet Audacity. Den första mätningen visar instrumentets respons på tomma strängar GDAE jämfört med min Guarnerius #1. Guarnerius #1 har ett bra ljud och jag använder därför det instrumentet som referens då jag justerar in den nya Stradivariusen.

Strad#1_starting_point_gdae

Strad#1 är den svarta kurvan. Min Guarnerius #1 är den röda kurvan. Notera hur Guarneriusen ligger betydligt lägre i det nasala området mellan 1000 Hz och 2000 Hz. Den nya fiolen har en extremt ”mjuk” ton som sannolikt beror på att kanalen mellan basbjälken och halsen är alltför tunn i förhållande till motsvarande kanal vid stränghållaren. Då området vid stränghållaren görs tunnare kommer tonen att ljusna.

Ovanstående kurva som består av övertonsspektret från alla de fyra lösa strängarna ger en viss bild av hur spektren ser ut men det är svårt att tolka bilden till följd av för mycket detaljer. Följande bild visar spektret från Gsträngarna på Stardiavarius #1 (svart) och Guarnerius #1 (röd).

Övertonsspektret för Strad #1 på G-strängen jämfört med motsvarande spektrum från Guarnerius #1.

Övertonsspektret för Strad #1 på G-strängen jämfört med motsvarande spektrum från Guarnerius #1.

Motsvarande spektrum för den öppna D-trängen nedan.

Strad1_guar1_d-string

Strad#1 och Guarnerius#1 öppen G-sträng.

Strad1_guar1_A-string

Stradivarius #1 och Guarnerius #1 öppen A-sträng.

Strad1_guar1_E-string

Öppen E-sträng. Strad (röd) och Guarnerius (svart).

Det allmänna intrycket av instrumentet innan justering utgående från spektren är att de låga strängarna har en något bättre respons (3 – 6 dB). Övertonsspektret för Stradivarius är sannolikt onödigt kraftigt inom området 1000 – 2000 Hz, det nasala området.

strad1_full_no_adjustments

Stradivarius #1 fullt knackspektrum utan justeringar. Det är lätt att se att en hel del grundläggande resonanser ligger fel och måste justeras.

Provspelning visar att framför allt G-strängen är onödigt ”rund” och den låter lite som om man skulle spela i en tunna. Dett problem tode vara rätt enkelt att eliminera.

 

Att stämma en stråke

14/05/2014

Maestronet diskuteras hur en stråke kan ”stämmas” så att den passar ihop med en fiol på bästa möjliga sätt. Vid första påseendet verkar frågan ganska irrelevant. Vad skulle man kunna stämma på en stråke?

Det finns dock en liten detaljs som tyder på att alla stråkar inte är skapade likvärdiga. Vilken är orsaken till att helt vettiga violinister ibland är villiga att i värsta fall betala 10000 – 20000 Euro för en riktigt bra stråke? Om alla stråkar skulle producera ljud på samma sätt så vore t.ex. 10000 Euro för en toppstråke ett absurt pris för ett så enkelt verktyg. Vi vet dock att toppstråkar går att sälja … det finns alltså något prisvärt.

Materialet som används i en stråke har naturligtvis en stor betydelse för hur en stråke fungerar. Å andra sidan är det ett känt faktum att ett riktigt bra stråkmaterial inte är en garanti för att resultatet blir en bra stråke. Hantverket och hur man skär till en stråke har också betydelse. Erfarna stråktillverkare verkar i viss mån stämma sina stråkar enligt användarens önskemål. Nedanstående video visar hur en stråke tillverkas.

Videon visar hur stråkmakaren på slutet försiktigt tunnar av stråken och klangen verkar ändra.

På Maestronet presenterades följande schematiska metod för stämning av en stråke, precis som vid stämning av fiolstall samt lock och botten tas extremt små mängder material bort (observera att områdena är grovt angivna) :

Området från spetsen till ca. 100 mm påverkar E-strängen.

Området 100 – 220 mm påverkar A-strängen.

Området 200 – 450 mm påverkar D-strängen.

Resten av stråken påverkar G-strängen.

Om t.ex. D-strängen låter dämpad så tar man loss froschen och skrapar bort lite material från undersidan av stråkstången där det inte syns.
Om t.ex. en not har en metallisk biklang så notera var tonen ligger och skrapa försiktigt på motsvarande punkt på stråken.

Vad händer

Då stråken dras över strängen kommer den turvis att ”klibba” vid strängen och turvis att glida med låg friktion. Då samma process upprepas snabbt kommer en sågtandsliknande triangelvåg att uppkomma som sedan filtreras i fiolens stall och i fiolkroppen. Då strängen börjar röra sig så kommer dess rörelse att påverka hurudan friktionen mellan strängen och stråken är vi får alltså en återkoppling från strängen. Det här är den konventionella förklaringen. Det är dock fysikaliskt sett självklart att varje gång stråken hugger/släpper så kommer motsvarande kraft som överförs i sidled till strängen att leda till vibrationer i stråkens längdled och vibrationerna är antagligen stora eftersom krafterna är desamma som på strängen!

Eftersom stråken är elastisk och den har massa så kommer den att börja vibrera. Det verkar naturligt att vibrationer med låg amplitud och hög frekvens kommer att genereras nära stråkens spets. Lägre frekvenser med större amplitud genererar vibrationer över en allt större del av stråken.

Om den drivande frekvensen är densamma som tonen violinisten vill spela så är allt sannolikt som det skall vara. Om däremot stråkresonansen råkar vara svag på den spelade tonen så kan någon närliggande stråkresonans bli betydelsefull vilket kan leda t.ex till icke önskade svävningar i den genererade tonen. Eftersom fjädern/massan i sptsen av stråken antagligen är icke linjär så verkar det troligt att frekvenser i strängen och i stråken ev. också genererar skillnads- och summatoner som eventuellt kan bli hörbara (distorsion/brus).

Harding fiddle spectrum when the open D-string is played

Harding fiddle spectrum when the open D-string is played.

Spektrum av en Hardangerfiol då en öppen D-sträng spelas.

Harding fiddle bow spectrum when an open D-string is played

Harding fiddle bow spectrum when an open D-string is played

Stråkens spektrum mätt med kontaktmikrofon då samma öppna D-sträng spelas. Notera att vi eventuellt får extra högfrekvensförstärkning (boost) i trakten av 3000 Hz. Stråken kan mycket väl ha en stor betydelse för klarhet och hur fiolen bär i en stor sal!

Fiolbygge: Experiment med omöjligt material (1)

11/05/2014

Jag har under den senaste tiden jobbat rätt mycket med att stämma plattorna på fioler. Råmaterialet har varit vita fioler från Kina av Roy Kang. Jag har graduerat om fiolerna och efter lackering slutjusterat dem så att de viktigaste svängningsmoderna fungerar. Slutjusteringen har alltid skett genom min egna specialteknik för inre slipning. Plattorna på fiolen slutjusteras alltså i ett skede då fiolen är lackerad och spelbar. Eftersom justeringen sker efter lackeringen blir man samtidigt av med en betydande felkälla d.v.s. lacket som rätt kraftigt kan flytta vissa resonanser.

Det senaste instrumentet är en stardivariuskopia med botten av såkallad ”birds eye” lönn. Materialet påminner till strukturen om masurbjörk och materialet uppkommer, antar jag, så att det bildas mängder av små kvistar i stammen, kvistar som ger ögon (potentiellt kvisthål) samt en extremt vacker vedstruktur.

Justering av locket

lock_strad1

Fig. 1  Locket är nu omgraduerat enligt medeltal av ett antal Stradivariusfioler.

Locket vägde obearbetat ungefär 83 g. Locket var något tjockare än vad jag anser vara lämpligt, det här var naturligtvis bra eftersom det gör en justering möjlig. Om locket hade varit allför tunt så hade det gett upphov till problem, det är svårt att lägga tillbaka material 😉 .

Observera att det här endast är det första steget i bearbetningen av locket. Den slutliga justeringen sker från insidan då instrumentet är ihoplimmat och i spelbart skick. Som ett experiment kommer jag att lacka insidan med ett lager shellack. Jag uppfattar att lackning av insidan bör göra lockets två ytor mera symmetriska vilket bör minska på mekanisk distorsion (om nu detta har någon betydelse).

IMGP5686

Baksidan av fiolen med ett lager grundlack. Observera den kaotiska vedstrukturen. Ett normalt fiolbotten har en vågig vedstruktur vilket gör att ljuset då ytan lackats bryts po olika sätt och ett randigt vågmönster uppstår. ”Birds eyes” lönn uppkommer sannolikt så att ett stort antal kvistar bildas på ungefär samma område på stammen. Ögonen är små kvistar som samtidigt kraftigt påverkar fiberriktningarna i stammen vilket ger ett mycket extremt men samtidigt, tycker jag, intressant utseende åt instrumentet. Problemet är dock att jag uppfattar att normala tumregler för hur man graduerar bottenplattan inte fungerar eftersom virket är kaotiskt. Min teknik för efterjustering bör dock utan problem bita på den här typen av trä också.

Många yrkesviolinisters reaktion är ”glöm det” d.v.s. ett instrument med lönn av den typen blir inte bra. Det blir mycket intressant att se hurudant det här instrumentet blir!

 

 


Pointman's

A lagrange point in life

THE HOCKEY SCHTICK

Lars Silén: Reflex och Spegling

NoTricksZone

Lars Silén: Reflex och Spegling

Big Picture News, Informed Analysis

This blog is written by Canadian journalist Donna Laframboise. Posts appear Monday & Wednesday.

JoNova

Lars Silén: Reflex och Spegling

Climate Audit

by Steve McIntyre

Musings from the Chiefio

Techno bits and mind pleasers

Bishop Hill

Lars Silén: Reflex och Spegling

Watts Up With That?

The world's most viewed site on global warming and climate change

TED Blog

The TED Blog shares news about TED Talks and TED Conferences.

Larsil2009's Blog

Lars Silén: Reflex och Spegling

%d bloggare gillar detta: