Is smälter då det är varmt … eller?

06/06/2015

Notera!
Artikeln har uppdaterats den 28.6.2015. En kurva över den globala temperaturen efter GHCN/GISS korrektioner hade fallit bort vilket kunde ha gjort artikeln onödigt svår att förstå.

År 1975publicerade den Nationella vetenskapsakademin i USA nedanstående bild som visar temperaturen på det norra halklotet. Bilden visar ungefär en 1 grad C uppvärmning från 1885 till 1940 och också att hela uppvärmningen från 1900 till 1940 hade försvunnit ungefär år 1970.

Temp_1880-1970_National_Academo_of_Sciences

Temperaturen på norra halvklotet 1880 – 1970 presenterad av amerikanska National Academy of Sciences år 1975.

Vi vet att det var verkligt kallt i Norden på 1860 – 1870-talet eftersom upp till tjugo procent av befolkningen dog på vissa områden i svält. Från Sverige rapporteras:

1860-talet var ett årtionde då missväxten drabbade Norrland upprepade gånger. 1867 var våren extremt kall och sommaren dröjde. Många vittnesmål finns om hur vintern vägrade släppa greppet:

den 22 maj kl 11.30 på dagen var det 1 grad kallt med vinden från nordost. Stockbuskarna stå ännu stångraka på träsket och snödjupet är 1 1/2 aln.den 25 maj: Kall blåst och aldrig töat, alldeles fullt snöföre, snödjup 1 1/4 aln. Den 24 maj körde vi på landfast is och ingen stickbuske var löstinad.den 1 juni: Kört isen med gott slädföre.den 17 juni blev träsket rent från is och på aftonen blev det stark storm och mycket regn.den 19 juni: Släppt ut korna. Snö i skogen, icke löv, icke blåbärsblad och intet gräs.
Anteckningar ur väggalmanackor funna hos Burträskbon Zakarias Wallmark[1]
Sundsvalls hamn på 1870-talet. Varken segelfartyg eller ångare kunde ta sig igenom is.

Först vid midsommar 1867 kunde man så i Burträsktrakten, och liknande förhållanden rådde på många håll i Norrland.

Bilden ovan visar att det ännu i mitten av 1880-talet var mycket kallt på norra halvklotet. Temperaturen började nu stiga och i början av 1920-talet kunde man i tidningarna läsa i princip samma sak vi har kunnat läsa i vår tid:

Northpole_melting 1923

Redan 1923 undrade man över om nordpolsisarna kommer att smälta bort helt.

Efter 1940 började temperaturen på nytt att sjunka och i början av 1970-talet hade hela uppvärmningen från början av 1900-talet fram till 1940 försvunnit. Tidningarna debatterade nu kylan och risken för en kommande istid.

NY_Times_1970_ice_age

Norra halvklotet är extremt kallt. Klippet är från NY Times 1970.

I slutet av 1970-talet hade avkylningen stoppat och den nya uppvärmningen hade blivit en del av politiken. Notera att man inom meteorologin anser att det behövs en trettioårsperiod av uppvärmning/avkylning för att man skall kunna tala om klimatförändring. Endast tio år efter att den 20-åriga avkylningen hada tagit slut så började marknadsföringen av en kommande värmekatastrof. Varför man vände kappan kan man antagligen förstå då man ser vad ”etablissemanget” bl.a. Romklubben höll på med. Man hade i början av 1970-talet diskuterat den katastrofala folkökningen och utgående från Matlthus idéer den kommande befolkningskatastrofen. Efter det andra världskriget hade man forskat mycket i hur man kan styra människomassor. Romklubben hade efter interna överläggningar kommit fram till att ”vädret”, ack så brittiskt, eventuellt kunde vara den hävstång som kunde användas till att påverka västerlandets befolkning.

I slutet av 1980-talet lanserade Gro Harlem Bruntland den ”hållbara utvecklingen” och ungefär samtidigt presenterade James Hansen den globala uppvärmningen som ett extremt hot genom att på sommaren stänga av luftkonditioneringen i det rum där teserna skulle presenteras … åhörarna kunde alltså känna värmen i sitt eget skinn…

Klimatetablissemanget kontrolleras via WMO (World Meteorological Organization) onder FN och de flesta nationella meteorologiska organisationer är kopplade till WMO. En liten klick på en handfull personer inom WMO, NASA och andra centrala organisationer har rätt väl kunnat kontrollera vem som fått publicera inom det meteorologiska området och också vad som får publiceras. Epostmeddelandena från ”klimategate” d.v.s. interna meddelanden från den inre ringen visar hur man bl.a. konspirerade för att ge sparken år obekväma redaktörer på centrala vetenskapliga tidskrifter. Historien visar att man i vissa fall lyckades …

E-postmeddelandena visar också hur man för ca. 15 år sedan diskuterade hur den obekväma värmetoppen på 1930-talets slut skulle elimineras. Marknadsföringen av den katastrofala uppvärmningen kunde inte vara övertygande om man samtidigt kunde peka på en period i närhistorien då temperaturerna var lika höga som idag. Man beslöt tydligen att eliminera problemet genom att ”justera” mätta temperaturer. Justeringen gjordes så att äldre mätningar gjordes kallare eftersom höjning av dagens temperaturer skulle vara alltför enkel att genomskåda genom att själv följa med temperaturen. Justeringarna har genomförts i en serie uppskattningar av jordens temperatur där de tidigare mätta temperaturerna efter varje justeringsgeneration har blivit kallare. Justeringarna har med åren nästan helt eliminerat 1930-talets värmeperiod, precis det de läckta ”klimate gate” epostmeddelandena efterlyste … intressant slump?

GISS_corrections_since_1999

Korrektioner till temperaturen i USA sedan 1999. Notera hur korrektionerna kring 1940-minskar den obekväma temperaturtoppen i slutet av 1930-talet.

Kurvan visar alltså den officiella temperaturen minus mätta rådata.

Samma korrektioner genomförs på många ställen i världen trots protester. Temperaturen i Reykjavik som den har blivit mätt av Islands meteorologiska institut visas i följande bild.

Reykjavik_before_adjustments

De Isländska meteorologerna har mätt följande temperatur för Reykjavik. Mätningarna innehåller relevanta korrektioner för plats och använda termometrar.

Amerikanska GISS (Goddard Institute of Space Science [NASA]) korrigerar mätningarna på följande sätt:

Reykjavik_after_adjustments

Temperaturen i Reykjavik efter GISS justeringar. De Isländska meteorologerna protesterar men utan resultat.

Notera hur värmeperioden kring 1940 då temperaturerna var lika höga som idag har eliminerats. Det Meteorologiska institutet på island konstaterar: “The GHCN ”corrections” are grossly in error in the case of Reykjavik”. (GHCN korrektionerna gällande Reykjavik är grovt felaktiga).

Samma typ av justeringar hittas på allt fler ställen i hela världen. Exakt motsvarande justeringar har gjorts i t.ex. Australien där saken har förts till domstol och de lokala myndigheterna har ålaggts att korrigera felaktigheterna … dock utan resultat.

Vad har de här Orwellska ”korrigeringarna” lett till?  Ett tydligt resultat är naturligtvis att vi ser en kontinuerligt stigande temperaturkurva som följer det fastslagna manuset att en katastrofal uppvärmning är på gång. Det man inte påminns om är att justeringarna leder till rätt intressanta motsägelser. Rubriken på den här artikeln är ”Is smälter då det är varmt … eller?”. Då vi jämför historiska rapporter om smältning/värme och tillfrysning/kyla inom polarområdet så dyker det upp roande konflikter.

Vi repeterar Nationella Vetenskapsakademins kurva från 1975:
Temp_1880-1970_National_Academo_of_Sciences

Och jämför ovanstående med GHCN/GISS korrigerade kurva som i politiska sammanhang anses vara sanning:
GISS_global_temp_meteorological_stations

I början av 1920-talet kunde man i tidningarna läsa om hur glaciärer smälter i snabb takt.

I början av 1970-talet kunde man läsa om hur isarna i norr lade sig på nytt och glaciärernas smältning hade stoppats.

Hur fungerar det här logiskt. Enligt de moderna korrigerade temperaturuppskattningarna var temperaturen på 1970-talet högre än i början av 1920-talet (jämför GISS korrigerade kurva ”Global Temperature meteorological stations”). Vi vet enligt nyhetsrapporter att vi hade en kraftig avsmältning från 1920 fram till en bit in på 1940-talet varefter isarna igen började breda ut sig. De korrigerade temperaturuppskattningarna säger alltså:

Glaciärer och is smälter då det är kallt och smältningen upphör då det är varmt.

Beklagligtvis köper jag inte det här. Antingen är alla dokumenterbara rapporter om värmeperioden 1920 – 1940 felaktiga eller så är dagens klimatkorrektioner grovt felaktiga.

Normalt bondförnuft säger att is smälter då det är varmt och vatten fryser då det är kallt … men det kan naturligtvis hända att George Orwell hade rätt!

Fantasier i realtid

11/05/2015

Jag har igen gjort en serie modifikationer på min Hardangerfiol. Jag har uppfattat att fiolens låga register har blivit rätt torrt eventuellt till följd av att lacket med åren hårdnar eller att träet långsamt oxiderar. Jag har försiktigt slipat lock och botten på insidan för att ge instrumentet lite mera must/djup. En justering är dock alltid en balansgång. Jag gillar mitt instrument och jag vill inte modifiera det så att det blir ett helt annat instrument eller så att den ljusa klangen i instrumentet försvinner.

P1040108

Min Kinesiskbyggda hardangerfiol.

 

fiol_botten

Slipning av området A gör tonen rundare/mörkare. Det är skäl att slipa extremt försiktigt här. Jag slipade denna gång området A ungefär 20 drag på insidan. Området B gör tonen ljusare. I allmänhet är man tvungen att slipa både A och B flera gånger för att hitta den balans i tonen man vill ha. Slipning av området C i bottenplattan ger en effekt som påminner om slipning i området B. Området E i bottenplattan påminner om området A i locket men effekten är mycket svagare.

Jag deltog i en sång/musikkväll i ”Fredsstationen” i Böle i Helsingfors torsdagen den 7.5.2015. Publiken bestod av främst ungdomar i åldern 15 – 30 år. Då jag blev uppmanad att spela/sjunga efter ett antal stycken tydligt inspirerade av Sufimusik beslöt jag att spela en improviserad ”meditation” på den modifierade Hardangerfiolen. Nedanstående ljudexempel är återskapad ur minnet vilket betyder att tonarten är densamma och den allmänna känslan bör bara rätt lika … men liksom all improviserad musik är det fråga om någonting som skapas i stundens ingivelse och sedan försvinner i intet. Stycket har ingen egentlig rytm och längden är rätt exakt 5 minuter. Stycket får spelas/reproduceras fritt utan ersättning. Källan får gärna anges men det är inget krav.

Inledande justering av Sockerfiol #2

31/03/2015

Sockefiol nummer 2 är lackad och börjar så småningom vara i spelbart skick. Jag har avtalat med min vän Zoltan Takacs som är toppviolinist vid den finska radioorkestern att vi gör den akustiska stämningen av fiolkroppen tillsammans så att han har möjlighet att se processen. Samtidigt har jag fördelen att ha ett extra par goda öron och en person som det går att diskutera skiftningar i fiolklangen med.

Innan injustering av kroppen är möjlig måste naturligtvis fiolen som sådan fungera. Den här artikeln beskriver hur fiolen ställs upp så att den är spelbar dock utan att göra bestående förändringar i fiolen. Slutresultatet av den här inledande justeringen är ungefär det slutresultat vanliga byggare får d.v.s. det här är vad resultatet råkade bli för just den här fiolen. För min process är det här startpunkten i en justeringsprocess som görs i små steg under några veckors tid.

IMGP2564

IMGP2554

Det första steget var att grovt yxa till ett stall med korrekt höjd och stränga fiolen så att det gick att se att stränghöjden var korrekt. Fötterna var ännu grovt tillskurna men det hindrar ju inte att man tar de första tonerna ur instrumentet. Mätningar av Dünnwaldparameterarna gav följande resultat:

File to process: 01_s2_initial.txt

Dunnwald parameters for :01_s2_initial.txt

A = 57.6187575814

B = 58.0013245333

C = 53.5653649062

D = 50.5725805287

E = 46.7906861788

F = 37.4920647702

L[Db] = -9.660404

ACD – B = -4.96729515679

DE – F = 10.681078587

Speciellt L-parametern är ganska usel. Fiolen har en mjuk något ”murrig” klang. Inte alls illa egentligen. Då fiolen provspelades av en folkmusikerbekant så gillades den skarpt … men stallet måste åtminstone justeras in så att det ser ut som ett stall. Stallet slipades in mot fiolen så att springorna under stallsfötterna försvann. Samtidigt sänkte jag stränghöjden en aning på E-sidan och tunnade av stallet på mitten. Resultatet av dessa förändringer blev:

File to process: 02_s2_stallet_inslipat.txt

Dunnwald parameters for :02_s2_stallet_inslipat.txt

A = 57.669968814

B = 57.57735385

C = 53.06503775

D = 50.2522291839

E = 47.6638228344

F = 39.8865612984

L[Db] = -3.291752

ACD – B = -4.80060196111

DE – F = 8.72344368901

Brilliansen minskade en aning (DE-F) medan framför allt L-parametern steg till ett område som börjar vara ok.

Spektret visar att området speciellt 3 … 4 kHz ligger rätt lågt vilket leder till att parametern DE-F också blir låg. Vad kan justeras?

Parametrarna L och ACD-B kan höjas genom att justera bottenplattan som nu inte ”ringer” korrekt. Knacktestning av bottenplattan ger ett dämpat ljud som snabbt klingar av. Jag lämnar dock dessa justeringar till torsdagen den 2.4 så att justeringarna kan göras tillsammans med Zoltan.

Värmebehandlar nu stallet utan andra modifikationer. Värmebehandling i (torr) kastrull så att temperaturen på kanske 5…10 minuter höjs till 130 grader C varefter stallet får svalna till remstemperatur. Den andra sidan av stallet behandlas på samma sätt.

File to process: 03_s2_stall_värmebehandlat.txt

Dunnwald parameters for :03_s2_stall_värmebehandlat.txt

A = 56.0291038605

B = 55.18143365

C = 52.0056394375

D = 48.6804344598

E = 45.523117702

F = 36.7762417016

L[Db] = -7.811827

ACD – B = -3.89359583519

DE – F = 9.90102120175

Vi ser att brilliansen ökade något (DE-F) och nasaliteten förbättrades marginellt. L-parametern försämrades men vi gör oss inget problem i detta skede eftersom vi sannolikt kan påverka L-parametern genom att flytta ljudpinnen. Jag satte in ljudpinnen rätt långt bakom stallet. Följande skede blir nu att stegvis flytta ljudpinnen framåt.

IMGP2539

Värmebehandlingen gick till så att jag lade stallet i en tom torr kastrull och värmde upp kastrullen på en elplatta till 130 grader C. Temperaturen kontrollerades med gjälp av en IR-termometer (Biltema). Då temperaturen nådde 130 grader stängdes plattan av och kastrullen/stallet fick svalna till rumstemperatur. Stallet svängdes sedan och den andra sidan behandlades på samma sätt.

Resultetet blev att stallet mörknade en aning. Om man inte följer med temperaturen är det lätt att bränna stallet vilket inte ser bra ut. Tänk på bakande av pepparkakor …

Vilken effekt har värmebehandlingen av stallet. Jag fällde stallet mot ett keramikfat och mätte ljudet från stallet före och efter värmebehandlingen. Resultatet blev:

s2_stall_obehandlat

Motsvarande spektrum efter värmebehandlingen har följande utseende:

s2_bridge_heat_treated_130degC

Notera hur de stora topparna blir jämnare och hur området 5 – 10 kHz stiger betydligt.

Observera!

Spektret är en kombination av ljudet från et keramikfat och stallet. Det är mycket svårt att dra några som helst slutsatser av spektren förutom att de höga frekvenserna verkar förstärkas vilket också är önskvärt.

Efter värmebehandlingen flyttades ljudpinnen i två steg. I det första steget flyttades ljudpinnen ungefär 0,5 mm i riktning mot stallet. Situationen före flyttningen framgör ur följande bild. Notera att f-hålets kanter med avsikt inte har färgats ännu eftersom den inre slipningen på grund av tung trafik in genom f-hålen sannolikt skulle ge vissa skador på lackskiktet vid kanten.

IMGP2550

Ljudpinnens startläge.

Spektret mättes innan ljudpinnen flyttades och Dünnwaldparametrarna beräknades ur spektret:

File to process: 04_s2_before_sound_post_movement.txt

Dunnwald parameters for :04_s2_before_sound_post_movement.txt

A = 54.5373453256

B = 53.34066135

C = 48.2681126562

D = 47.462948046

E = 42.6428494967

F = 34.945097375

L[Db] = -5.981938

ACD – B = -3.84089632531

DE – F = 9.45972091912

Stallet flyttades nu framåt mot stallet ungefär 0,5 mm och spektret mättes igen.

File to process: 05_s2_snd_post_0.5mm_towards_bridge.txt

Dunnwald parameters for :05_s2_snd_post_0.5mm_towards_bridge.txt

A = 57.7177763721

B = 58.3479794667

C = 52.1596876562

D = 49.8472987126

E = 47.4275626689

F = 38.7599602016

L[Db] = -4.008617

ACD – B = -5.9548351642

DE – F = 9.5521278278

Instrumentet fick nu vila i en timme varefter spektret mättes på nytt och motsvarande Dünnwaldparametrar beräknades:

File to process: 06_s2_before_second_snd_post_move.txt

Dunnwald parameters for :06_s2_before_second_snd_post_move.txt

A = 57.0221154884

B = 55.7270328

C = 50.574507375

D = 49.1470482529

E = 45.2956242649

F = 37.7892715202

L[Db] = -5.935711

ACD – B = -4.20772168889

DE – F = 8.91422621933

Ljudpinnen flyttades nu ca. 1 mm mot stallet med följande resultat:

File to process: 07_s2_snd_post_1mm_towards_bridge.txt

Dunnwald parameters for :07_s2_snd_post_1mm_towards_bridge.txt

A = 57.042697814

B = 55.2120464667

C = 50.7065035937

D = 48.6203173218

E = 45.0775141523

F = 37.4736369274

L[Db] = -2.546658

ACD – B = -3.94407283704

DE – F = 8.89893552636

Fiolen får nu vila ett par dagar innan den inre slipningen tar vid. Det kan vara kul att jämföra ovanstående inte ännu speciellt goda parametervärden med några kända Guarnerius/Stradivariusvioliner. Värdena är tagna ur Anders Buens artikel ”On Timbre Parameters and Sound Levels of Recorded Old Violins”. Artikeln finns på nätet. Googla på artikelns namn och Anders Buen.

Vi hittar följande:

Sockerfiolens L-parameter (bas) är -2.5 i detta skede vilket motsvarar Guarneri del Gesu 1742 ”Wieniawski” motsvarande parameter.

Sockerfiolens nasalitet ACD-B-parameter är -3.9 vilket är något sämre än Guarneri del Gesu 1735 ”Plowden” (-2.1).

Sockerfiolens brillians DE – F-parameter är 8,9 vilket motsvarar Guarneri del Gesu 1726 ”Stretton”. Värdet är tydligt bättre än motsvarande för ovannämnda ”Plowden” (7.0).

Notera att ovanstående endast är en intressant lek med siffror och ett sätt att kategorisera toppinstrument. Ljudmässigt ligger vi dock inte i det här skedet alls dåligt till.

Följande artikel kommer att behandla inre justering av sockerfiolen ovan. Målet är att i viss mån höja alla parametrarna (högre värde är bättre). Ett mål kunde vara att försöka få fiolen att mäta in på följande sätt:

L[Db] = -2

ACD – B = 1.7

DE – F = 12

Får vi fiolen justerad på detta sätt har vi ett instrument vars Dünnwaldparametrar motsvarar Antonius Stradivarius 1692 ”Oliveira”. Det blir intressant att se hur långt vi vågar gå. Notera att justeringen kommer att kräva ett antal veckor. Sannolikheten är mycket liten att man på ren tur hittar ett bra läge efter några timmars filande.

 

Dünnwaldparametrar som hjälp vid fioltrimning

19/03/2015

Uppdaterin 20150320: Det ser ut som om det har rätt stor betydelse hur skalan spelas. Min gissning är att det är skäl att spela skalan i halvtonssteg för att inte av misstag överbetona vissa resonanser och därigenom skapa en falsk fild av de ”verkliga” parametrarna. Det här kräver en del extra experimenterande. Jag återkommer senare med ytterligare kommentarer.

 

Anders Buen har skrivit en intressant artikel om tonfärgsparametrar och ljudnivå i inspelningar av gamla violiner. Det visar sig att tre parametrar är tillräckligt för att skilja klassiska fioler av Stradivarius- eller Guarneriustyp från majoriteten av nya violiner. Buens artikel bygger på forskning av H. Dünnwald.

Dünnwald jämförde inspelningar av 15 st erkänt goda Stradivariusvioliner och 15 erkänt goda Guarneriusfioler med moderna fioler och kom fram till att man med hjälp av tre parametrar, genom mätningar, i allmännhet kan lägga de gamla Cremonensiska fiolerna i en grupp och moderna instrument i en annan grupp.  Dünnwalds parametrar är extremt enkla att beräkna … något som gör dem mycket intressanta om man vill utnyttja dem som hjälpmedel då man stegvis optimerar en fiol.

Definition av Dünnwaldparametrarna

Sonoritetsparametern ”L” är ett mått på hur djup bas instrumentet har. Parametern definieras som:

L(dB) = Lmax(244-325Hz) – Lmax(649-1090Hz)

Man jämför i praktiken de högsta topparna inom de angivna frekvensintervallen. Notera att t.ex. G på den lösa G-strängen inte finns med eftersom denna resonans i allmänhet ligger långt nedanför t.ex. resonansen D (vid ca. 294 Hz). I moderna instrument ligger värdet på L-parametern ofta lågt kanske inom området -10 eller lägre. Resultatet kan vara en bas som känns ”torr” eller ”sträv”.

Nasalitetsparametern ACD-B i dB definieras som skillnaden mellan medelamplituderna inom intervallen:

ACD-B = Leq(190-650Hz och 1300-2580Hz) – Leq(650-1300Hz)

Brillians DE-F i dB definieras som (medelvärdet i de olika områdena):

DE-F = Leq(1640-4200Hz) – Leq(4200-6879Hz)

Paramerarna beskriver fioler på följande sätt:

L(dB)        Höga värden erhålls för goda och basrika fioler.

ACD-B     Höga värden för fioler som inte är ”nasala”

DE-F         Höga värden för fioler som är klara/brillianta. Låga värden ger instrument som låter sträva.

Dünnwald definierade följande frekvensområden som beskriver ”Cremonensiska” instrument och som kan användas till att gruppera Cremonensiska instrument i en gemensam grupp jämfört med de flesta ”moderna” instrument.

Områdena betecnas A, B, C, D, E och F och jag har av praktiska orsaker valt att numrera samma områden 1 … 6 på följande sätt:

1 = A betecknar området 244 – 325 Hz

2 = B betecknar området 649 – 1090 Hz

3 = C betecknar området 1300 – 1640 Hz

4 = D betecknar området  1640 – 2580 Hz

5 = E betecknar området 2590 – 4200 Hz

6 = F betecknar området 4300 – 7000 Hz

Hur används Dunnwaldparametrarna vid injustering

Arbetsgången är följande:

Spela in en skala t.ex i G-dur från låga G på G-strängen upp till H (B) på E-strängen. Spela alla toner kraftigt med ett bestämt tryck på stråken och använd kraftigt vibrato på de toner där det är möjligt. Jag använder en Zoom R8 inspelningsapparat och en högklassig kondensatormikrofon med stort membran (Rode NT1, den nyaste versionen).

  • Läs in inspelningen i Audacity. Klipp bort onödigt material från inspelningen d.v.s. störningar före/efter skalan.
  • Välj hela den inspelade skalan och normalisera amplituden (Effect/Normalize)
  • Kör ett spectrum på den inspelade skalan (Analyze/Plot Spectrum). Ställ in spectret Hanning Window, Log frekvens och fönsterstorlek 4096.
  • Exportera spektret som en textfil.
  • Kör ditt program som beräknar Dunnwalparametrarna och som skapar en fil för uppritning av parametrarna. I mitt fall Dunn_A.py .

Resultatet blir en serie grafer som i sig så småningom börjar ge användbar information samt Dunnwaldparametrarna för ifrågavarande modifikationssteg.

Inläsning i Audacity ger en amplitudkurva som visar skalan vi spelade i grafisk form:

Demo_Audacity_harding_fiddle

Hardangerfela, inspelat ljud efter 17 justeringssteg.

Notera att Dunnwalparametrarna har bestämts utgående från inspelad musik (från skiva). Detta betyder att toppviolinerna spelas med naturligt vibrato. Filen ovan är också spelad med vibrator för att göra den egna inspelningen mera kompatibel med Dunnwalds material.

Följande steg är att beräkna ett spektrum utgående från den kompletta inspelade skalan.

Screenshot - 19.03.2015 - 10.48.04

Spektrum genererat med Audacity från inspelningen ovan (Hardangerfiol).

Vi exporterar därefter filen som en textfil som består av de datapunkter ovanstående spektrum består av.

Frequency (Hz) Level (dB)
10,766602 -61,425014
21,533203 -57,003529
32,299805 -57,556839
43,066406 -59,613266
53,833008 -63,019962
64,599609 -67,556679
75,366211 -70,066673
86,132812 -70,658653
96,899414 -72,279839
107,666016 -75,024010
118,432617 -77,286835
129,199219 -78,456154

… e.t.c.

Textfilen behandlas därefter i programmet Dunn_A.py som är ett såkallat Python-script. Programmet använder definitionerna på Dünnwaldparametrarna ovan och beräknar ifrågavarande Dünnwaldparametrar för spektret ovan. All analys görs under Linux men det är självklart att samma sak kan göras också under Windows … men jag gillar inte Windows som utvecklingsomgivning!  Resultatet blir:

./Dunn_A.py 17_har_btn_uppe_esidan_balans.txt

File to process: 17_har_btn_uppe_esidan_balans.txt
Dunnwald parameters for :17_har_btn_uppe_esidan_balans.txt
A = 57.2790034651
B = 55.5393324333
C = 52.5985449688
D = 51.3234882299
E = 49.7805976623
F = 39.7953643065
L[Db] = -3.600813
ACD – B = -2.3831962358
DE – F = 10.5492311683

Vi ser att fiolen i slutskedet av slipprocessen har Dünnwaldparametrarna:

Sonolitet (L(dB)) = -3,6

Nasalitet               = – 2,3

Klarhet                 = 10,55

Jämförelse med toppfioler. Jämförelsen är tagen ur Anders Buens artikel ”On Timbre Parameters and Sound Levels of Recorded Old Violins”.

Allmänt kan det sägas att högre värden på Dünnwaldparametrarna är bättre. Likaså är antagligen ett högt värde på summan av parametrarna ett mått på instrumentets godhet.

Exempel #1

Jag har via min son Sebastian, som är yrkesviolinist, haft tillgång till en fransk Chanot toppfiol. Bara möjligheten att provspela det här instrumentet lärde mig att lyssna efter en klarhet/tonfärg som saknades i mina egna fioler innan de justerades.

./Dunn_A.py chanot_vibrato_dominant_20150318.txt

File to process: chanot_vibrato_dominant_20150318.txt
Dunnwald parameters for :chanot_vibrato_dominant_20150318.txt
A = 56.2209502326
B = 53.89373555
C = 46.5512793437
D = 49.6366710345
E = 50.0042672649
F = 39.7148046734
L[Db] = -8.702337
ACD – B = -3.11884555617
DE – F = 10.1550891796

Notera att Hardangerfiolen efter en serie justeringssteg ligger över Chanot toppfiolen för alla Dünnwaldparametrar. Fiolen har nu faktiskt ett mycket gott ljud! Notera också att värdena är angivna i decibel (dB). Man anser i allmänhet att skillnader större än 2 … 3 dB börjar vara hörbara.

Hur mäter Hardangerfiolen in jämfört med kända Stradivariusfioler och Guarneriusfioler?

Exempel #2

Guarneriusfiolen ”Wieniawski” mäter in på följande sätt:

L(dB)    = -2,3

ACD-B = 0,6

DE-F     = 13,6

Hardangerfiolen ligger mycket nära. Skillnaden är liten men den bör vara hörbar:

Sonolitet (L(dB)) = -3,6

Nasalitet               = – 2,3

Klarhet                 = 10,55

 

Exempel #3

Guarneri del Gesu från 1742 ”Sloan” mäter in så här:

L(dB)        =  -2,7

ACD – B   =   0,1

DE – F       =  13,2

Hardangerfiolen mäter in:

Sonolitet (L(dB)) = -3,6

Nasalitet               = – 2,3

Klarhet                 = 10,55

 

Exempel #3

Stradivarius ”Hellier” från 1679 mäter in så här:

L(dB)     =  -6,0

ACD-B  =  -1,2

DE-F      =  10,3

Hardangerfiolen mäter in:

Sonolitet (L(dB)) = -3,6

Nasalitet               = – 2,3

Klarhet                 = 10,55

 

 

Förändring i Dünnwaldparametrarna under injusteringen

En violin kan korrigeras om den mäter in dåligt. Det faktum att den mäter in dåligt kan alltid höras då man spelar på instrumentet. I början av justeringsprocessen var mätresultatet för Hardangerfiolen:

L[Db] = -14.525938
ACD – B = -2.91313386481
DE – F = 9.31585192488

Speciellt L-värdet är lågt och man hör tydligt en viss ”strävhet” då man spelar på instrumentet. Orsaken till den sträva tonen är att basens grundton saknas nästan helt och den första övertonen är svag.

Justeringen gjordes på följande sätt:

  • Knacktestade bottenplattan som saknade ”ring”. Slipade bottenplattan på insidan tvärs över vid övre och nedre ringnoderna. Det här förbättrar generellt basresponsen. Slipning av noden uppe vid halsen (bottenplattan) verkar också påverka brilliansen positivt. Noderna uppe/nere slipas så att knacktonen blir jämn tvärs över bottenplattan.
  • Kanalen mellan hals och basbjälke på locket slipades för att ge tonen aningen mera djup.
  • Kanalen i locket mellan basbjälke och bottenkloss slipades. Basen blir bättre men tonen ljusnar i viss mån.
  • Kontrollerade knacktonen mitt på bassidans f-hål som var lägre än det stora området i fibrernas riktning ungefär vid största bredden på locket. Höjde knacktonen området vid f-hålet genom slipning. Slipning av detta område tenderar att ge mera ”märg” år G- och D-strängarna. L-parametern tenderar att stiga eftersom toppen D vid ungefär 294 Hz tenderar att stiga.
  • Brilliansen ökas genom att slipa E-sidans f-håls inre kant ungefär vid mitten av f-hålet. Det kan löna sig att experimentera i små steg och slipa mitt på f-hålet både på insidan och utsidan.

Alla justeringar bör göras i små steg d.v.s. 50 – 100 slipdrag varefter ljudet mäts på nytt och Dünnwaldparametrarna beräknas. Parametrarna ger en mycket bekväm och lättläst återkoppling d.v.s. man ser genast om en modifikation för instrumentet i fel riktning. Om slipning på en specifik plats ger en försämring så försöker man naturligtvis på en annan plats och fortsätter inte slipa fram en ytterligare försämring.

Det är vart att notera att 100 slipdrag motsvarar ungefär en uttunning på 1/100 mm vilket med konventionella mätmetoder är omätbart men resultatet hörs tydligt. Den extrema känsligheten för tjockleksförändringar är enligt min uppfattning orsaken till att det inte finns en pålitlig metod att försöka kopiera fioler genom att mäta lock och botten och därefter kopiera orginalets dimensioner. Kopian kan inte bli exakt! Däremot är det självklart att en välgjord platta kan efterjusteras av en skicklig instrumentbyggare så att instrumentet efter justering blir bra.

Dunnwald_raw_data

Bilden visar hur de olika områdena A … F förändras vid justering. Ur de olika kurvorna kan Dünnwaldparametrarna enkelt beräknas om så önskas. Notera att ett specifikt spektralban kan förändras med över 10 dB till följd av justeringen.

 

 

Några länkar:

http://www.maestronet.com/forum/index.php?/user/25136-anders-buen/

Anders Buens artikel:

http://www.google.fi/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCQQFjAA&url=http%3A%2F%2Fwww.akutek.info%2FPapers%2FAB_Timbre_Parameters.pdf&ei=6K0KVaO1O5DxaOW-gNAE&usg=AFQjCNF4h1UWWcqbdVWNCUE0PxQR-twRsw&bvm=bv.88528373,d.d2s

What is old Italian Timbre:

http://www.google.fi/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CC8QFjAB&url=http%3A%2F%2Fwww.maestronet.com%2Fforum%2Findex.php%3Fapp%3Dcore%26module%3Dattach%26section%3Dattach%26attach_id%3D8999&ei=6K0KVaO1O5DxaOW-gNAE&usg=AFQjCNFRQRdfC_aWzlxSDx9SeLv9-JhFCA&bvm=bv.88528373,d.d2s

 

 

 

 

 

 

 

 

 

 

 

Alternativ färg för fiol

22/02/2015

Maestronet har man diskuterat olika tekniker för att lacka fioler. Det finns antagligen tusentals eller tiotusentals olika recept på lack både färgat och ofärgat. Personligen har jag köpt färdigt lack och jag har inte sett något behov av att börja koka lack själv. Genom de olika lackrecepten strävar man efter:

  • En vacker färg
  • Djup/lyster som framhäver träets struktur
  • En lackyta som håller i flera hundra år
  • Lack som inte förhindrar plattornas svängningar
  • Lack som inte är för tungt

Det finns många metoder för att ge instrumentets dess grundfärg. Den äldsta metoden var att hänga upp den trävita fiolen så att den utsattes för ljus varvid ytskiktet kommer att oxideras vilket gör att fiolen gulnar. Modernare metuder är att man hänger upp fiolen i ett UV-skåp, resultatet blir detsamma som för solbehandling men processen är snabbare … och processen lämpar sig bättre för vårt nordiska klimat.

Andra alternativ är att man tätar träytan med något lämpligt material. Många olika material används såsom gelatin, benlim, kasein etc. Tanken är att man ”tätar” porerna i träytan innan man lägger på färg eller lack. Färgämnet, bränt socker, i den här episteln både färgar och tätar ytan.

IMGP1289

Sockergrund på fiol. Ena halvan (den nedre halvan som är matt) av instrumentet har endast ett sockerlager. Den övre halvan har ett lager lack ovanpå sockerlagret.

Så här ser instrumentet ut som nästan färdigt:

IMGP1528

Sockerfiolen börjar vara färdig att provspela.

Hur tillverkar man sockertätningsmedlet/färgämnet

Häll upp mellan en halv och en deciliter mörk sirap i en liten kastrull. Sirapen kan inte användas obehandlad även om färgen kunde vara lämplig eftersom den obehandlade sirapen inte torkar! Genom att hetta upp sirapen kommer den att delvis förkolna vilket ger en djupare rödbrun färg och samtidigt polymeriseras sockret så att längre sockerkedjor bildas vilket gör att materialet torkar utan att vara klibbigt.

Det har visat sig att det är praktiskt att följa med processen med hjälp av en infrarödtermometer som mäter det smälta sockrets temperatur utan kontakt. Biltema säljer en lämplig IR-termometer för några tior (Euro).

IMGP1897_PEF_embedded

Kokprocessens första skede. Vatten avgår men färgen ändrar inte.

IMGP1898_PEF_embedded

Temperaturen ligger nu på ca. 130 grader C. Färgen börjar tydligt mörkna.

IMGP1899_PEF_embedded

Temperaturen ligger nu på ungefär 150 grader.

IMGP1900_PEF_embedded

Temperaturen är nu mellan 170 och 180 grader C. Längre än detta gick jag inte vid detta kok.

 

Uppvärmningen sker på elspis där plattan kan regleras i sex steg. Jag har kört på halv effekt. Då uppvärmningen startar börjar sirapen bubbla då vattnet avgår som ånga. Då vattnet har kokat bort börjar sirapens temperatur stiga från något över 100 grader upp till ca. 130 grader. Temperaturen kommer att ligga rätt länge på denna nivå medan färgen långsamt mörknar. Efter en stund börjar temperaturen stiga ytterligare. Jag slutade koket då temperaturen gick upp till 175 – 180 grader. Min gissning är att färgen skulle ha blivit bättre om jag hade fortsatt kokningen till ca. 200 grader. Färgen skulle ha blivit brunare och mörkare än den nu relativt gulbruna färgen.

Då sockret har fått den färg jag vill ha lägger jag försiktigt till vatten. Observera att det gäller att vara extremt försiktig eftersom det finns risk för stänk av tvåhundragradigt socker om man lägger till alltför mycket vatten på en gång. Vatten måste läggas till medan sockerfärgen är het eftersom materialet annars då det svalnar blir stenhårt och det krävs mycket tid att lösa upp materialet efter att det stelnat. Resultatet blir sockerfärg som i vattenlösning ser nästan svart ut. Då färgen dras på fiolen blir den guldbrun.

Sockerfiolen nummer två fick nu ett lager sockerfärg. På sockergrunden läggs därefter ett lager klarlack. Efter detta arbetsskede måste resultatet utvärderas. Om det behövs kan jag lägga på lite bärnstensfärgat lack och därefter mera klarlack beroende av vilken slutlig kulör jag vill ha.

Artikeln kommer att uppdateras med bilder på det nya instrumentet.

 

 

 

Experiment med konvertering av musik till noter

18/02/2015

Bakgrund

Min äldre bror stötte nyligen på ett nytt intressant programspråk ”Julia” som har influerats av Python, Matlab och många andra programmeringsspråk. Julia har en relativt intuitiv syntax vilket betyder att det är rätt enkelt att lära sig språket då man har använt andra programmeringsspråk. Julia påminner om språket Python men Julia kan vara tiotals gånger snabbare … nästan lika snabbt som kompilerad c-kod trots att Julia är ett tolkat språk med alla de fördelar detta medför (bl.a. enkelt att skriva program stegvis och tista medan man skriver).

Problemet att ur spelad musik har intresserat mig länge men jag har inte kommit mig för att skriva verktyg. Julia råkade nu bli den faktor som gjorde att jag började experimentera med notgenerering för att samtidigt lära mig språket Julia.

Det här kommer antagligen att bli en serie artiklar där olika aspekter av problemet behandlas … och det finns inga garantier för att slutresultatet på riktigt blir användbart.

Existerande hjälpmedel

Tanken är inte att skriva allt som behövs själv utan existerande programkod kommer att användas. Följande program används för närvarande.

  • Programmet Audacity används för inspelning. I samband med inspelningen normaliseras ljudfilen till standardamplitud eftersom detta förenklar analysen.
  • Julia används för programmeringen och Julia innehåller de FFT (fast fourier transform) rutiner som behövs för att plocka ut toner ur ljudmassan.
  • Programmet LilyPond används för att generera noter

Konvertering av ljudfilen till musikaliska toner

Det första programmet extract_notes.jl läser block om 8152 ljudsampel från ljudfilen som är samplad i CD-kvalité d.v.s. 44100 Hz. Ett datablock motsvarar då ungefär 200 ms ljud och den teoretiska upplösningen i spektret som skapas med FFT är ungefär 5 Hz.

Tanken är att analysera hela filen i 200 ms block. blocken/tonerna kan senare kombineras till något som motsvarar verkliga noter men detta är något för framtiden. Det är självklart att inte endast en ton utan en hel serie toner kommer att hittas i varje tonblock eftersom en fiolton innehåller en lång serie övertoner. Hur jag väljer att utnyttja övertonsserierna är också ett problem som lämnas för framtida optimering.

Programmet extract_notes.jl skapar en textfil som innehåller de noter programmet hittade samt amplituden för de olika tonerna (tonstyrkan). Textfilen ser för närvarande inte vacker ut:

Length:605696
Längd i sekunder:13.734603174603174
N ASCIIString[”d'”,”a””,”a”'”,”c”””,”d”””,”?”,”?”,”?”,”?”,”?”,”?”, … ,”?”,”?”,”?”,”?”,”?”]
A [-31.890321498989003,-30.634769023040928,-32.27245706229339,-30.018825559930626,-29.475444684452142,-9999.0,-9999.0, … , -9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0,-9999.0]
N ASCIIString[”d'”,”d””,”a””,”c”””,”d”””,”?”,”?”,”?”,”?”,”?”,”?”,”?”,”?”,”?”, … , ”?”,”?”,”?”,”?”,”?”,”?”]

o.s.v.

En rad som börjar med ”N” innehåller detekterade noter t.ex. ” d’ ”  , ” a” ” . ”?” betyder att ingen not har hittas för denna position i tabellen.

En rad som börjar med ”A” innehåller amplituder. En amplitud med värdet -9999.0 betyder att ingen amplitud finns för denna not.

Notnotationen är den som används i LilyPond.

Generering av noter

För att generera noter behöver vi nu endast plocka ut notvärdena ur tabellen och skriva ut noterna (de harmoniska övertonerna) som ett ackord i LilyPond.

Ett ackord i LilyPond betecknas med:

< not0 not1 not2 … >

Då vi plockar ut noterna får vi:

<   d’    a”   a”’  c””  d”” >

Vi kan titta på noterna genom att helt enkelt lägga till LilyPond startkod och slutkod så att man får en LilyPondfil som kan kompileras. Jag har skrivit ett separat litet program som läser textfilen ovan och konverterar den till kompilerbar LilyPond-kod. Programmet heter process_notes.jl .

Startkoden är:

\version  ”2.16.2”
{

Slutkoden är:

}

Resultatet för melodin ”Gubben noak” blev:

\version  ”2.16.2”
{< d’  a”  a”’  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  fis”’  a”’ >
< d’  dis’  d”  a”  fis”’ >
< d’  d”  a”  a”’  c”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  fis”’  a”’ >
< cis’  d’  d”  a”  c”” >
< d’  d”  a”  fis”’  c”” >
< d’  d”  a”  a”’  c”” >
< d’  d”  a”  fis”’  a”’ >
< d’  dis’  d”  a”  a”’ >
< d’  dis’  d”  a”  a”’ >
< fis’  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  cis”” >
< e’  g”’ >
< e’  e”  b”  g”’  gis”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< dis’  e’  e”  b”  g”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  e”’  gis”’ >
< dis’  e’  e”  b”  gis”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< g’  d”’  g”’  b”’  d”” >
< g’  d”’  g”’  b”’  d”” >
< g’  d”’  g”’  b”’  d”” >
< g’  d”’  g”’  b”’  d”” >
< fis’  g’  cis”’ >
< fis’  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  cis”’  fis”’  ais”’  cis”” >
< fis’  cis”’  fis”’  cis”” >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  fis”  cis”’  fis”’  ais”’ >
< fis’  cis”’  cis”” >
< e’  e”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  b”  gis”’  b”’ >
< e’  e”  gis”’  b”’ >
< e’  e”  gis”’  b”’  cis”” >
< e’  e”  gis”’  b”’  cis”” >
< e’  e”  gis”’  b”’  cis”” >
< e’  e”  gis”’  b”’  cis”” >
< cis’  d’ >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  d”  a”  c””  d”” >
< d’  a” >

Den här filen kan nu LilyPond processa:

lilypond mellanresultat.ly

Resultatet blir en pdf-fil som heter mellanresultat.pdf .

ofiltrerad

Rå notutskrift då programmen har analyserat början av ”Gubben Noak”.

Mängden av toner är en följd av att en fiolton är mycket övertonsrik och spektret således inte innehåller endast en ton utan en mycket lång rad harmoniska och icke harmoniska övertoner.

Då man betraktar bilden så ser man en hel del dubletter som ligger på ett halvt tonstegs avstånd från varandra. Detta betyder inte att tonen är skärande dissonant utan på att ifrågavarande ton är relativt kraftig och spektraltoppen relativt bred. Resultatet är att analysprogrammet kommer att få flera träffar vid en ton. Frågan blir då hur man bäst filtrerar bort de oönskade tonerna?

Svaret på frågan får vila till nästa artikel 🙂 .

Justering av en kinesisk altiol (Yita Music)

18/01/2015

Jag köpte en altfiol från Yita Musik i Kina för några år sedan. Priset låg då på kanske 250 dollar. Fiolen har spelats av olika musiker, också proffs, och kommentarerna har allmänt taget varit rätt positiva. Instrumentet är välbyggt och ljudet är rätt skapligt men absolut inte perfekt. Jag fick nyligen tillbaka instrumentet och beslöt att titta på det igen och naturligtvis göra vissa justeringar. Jag vet att följande detaljer aldrig har justerats:

  • Bottenplattan har aldrig stämts genom inre slipning
  • Locket har aldrig stämts via inre slipning
  • Stallet har aldrig värmebehandlats
  • Stallet verkar rätt tjockt upptill baserat på mina nuvarande erfarenheter

Jag beslöt att justera bottenplattan och stallet men locket skulle inte röras denna gång.

IMGP1470

Altfiolen framifrån

IMGP1473

Altfiolen bakifrån

Om mätningarna

Alla mätningar har gjorts så att jag spelar en skala upp från låga C till D på A-strängen och därifrån ner igen till C. Vid inspelningen har jag använt en Logitech USB mikrofon som på intet sätt är perfekt men den fungerar inom det frekvensområde, 200 Hz – 6 kHz, som intresserar mig.

Fördelen med att spela en långsam skala jämfört med att göra ett knacktest på stallet är att man tydligare ser en specifik tons övertoner och framför allt amplitudförhållandet mellan övertonerna. De harmoniska övertonerna ger instrumentet dess klang.

C-strängen tonen F

Utgångsläget innan några som helst justeringar har gjorts visas i fig. 1.

Utgläge_F_C-str

Fig. 1 Tonen F på C-strängen spelad innan någon korrigering gjorts.

Notera hur övertonen F7 (den mittersta och högsta toppen i gropen mellan 2-3 kHz) ligger 33 dB under oktaven F4 mellan 300-400 Hz. Grundtonen F3 ligger itrakten av 180 Hz och den är svag.

Jag knackade runt på ringmoden på bottenplattan med altfiolen stämd och spelbar. Resultatet var att tvärnoden nere under stränghållaren hade en låh knackton jämfört med mitten av locket och tvärnoden uppe nära halsen (som även den var något låg).

Jag gjorde en första grovjustering genom att slipa tvärnoden nere 300 drag, uppe vid noden vid halsen 100 drag och noden vid C-bågarna 100 drav var. Provspelning efter slipningen gav en ”menlös” rätt tråkig ton utan sting. Situationen ordnade sig dock av sig själv antagligen till följd av att de slipade platserna svalnade och eventuellt ytlagret hårdnade. Efter 15 minuter kunde man tydligt höra en förbättring jämfört med utgångsläget.

Mätningar visade att området 3-5 kHz hade stigit med ca. 3 dB jämfört med grundregistret 200 – 1000 Hz.

Slipade ytterligare +100 drag efter några timmars paus.

Slipade noden vid C-bågarna i bottenplattan. Det här gav en försämring så att tonen blev torrare och strävare. Man skall helt tydligt vara försiktig med att röra området i trakten av C-bågarna. Dessa områden lämnas ofta relativt tjocka av byggare.

Balanserade f-hålens vingar ett första varv. Jag slipar vingen från insidan så att man får en jämnt sjunkande ton då man knackar från vingspetsen ner mot fiolens nedre del eller upp mot halsen. Min uppfattning är att en mjuk knacktonsövergång låter vingen koppla till ett större frekvensintervall utan att endast vissa toner förstärks.

Frovspelning visade att tonen på C- och G-strängarna fortfarande var något torr/sträv men utan den varma hartzighet jag vill ha. Lösningen är att slipa tvärs över nere vilket tar bort torrheten och ger lite mera värme och skärpa i tonen. Slipade 100 drag nere. Ett problem vid slipningen under stränghållaren är att den här fiolen har två frimärken som förstärker mittlimfogen. Eftersom frimärket låg mitt på den nod jag ville slipa slipade jag en lång ellips runt förstärkningsfrimärket. Resultatet var det förväntade och tonen blev bättre.

Jag tog nu loss stallet och tunnade av det något upptill. Resultatet är att vi flyttar stallets huvudresonans högre upp i frekvens vilket förstärker området 2-4 kHz som ger brillians åt tonen. Jag värmebehandlade stallet i en aluminiumkastrull så att jag lade stallet i kastrullen (torr!) och värmde den på full effekt på elspisen. Då temperaturen nådde 130 grader C flyttade jag bort kastrullen från plattan och lät stallet långsamt svalna i kastrullen. Sidan upp mot halsen värmdes mycket försiktigt endast så att stallet inte skulle slå sig. Temperaturgränsen 130 grader var antasgligen onödigt hög. Nästa gång värmer jag till 120 grader C eftersom dagens uppvärmning gav synliga färgförändringar.

Efter_värmebehandling

Fig. 2 Situationen efter värmebehandling av stallet.

Notera hur området 2-3 kHz har vuxit kraftigt, detta område ger ”must”, ”klang” åt den spelade grundtonen.

G- och D-strängarna kändes något svaga jämfört med C- och A-strängarna. Detta åtgärdades genom att försiktigt med stallet på plats vidga hålen i stallets hjärta. Hålet under D-strängen påverkar mera klangen i G-strängen och hålet under G-strängen påverkar klangen i D-strängen. Justeringen gav det förväntade resultatet.

Jag slipade ytterligare +100 drag i noden nere för att ge bättre klang i C- och G-strängarna.

Jag jämnade ut A-sidans inre vinge som lät låg nära stallet. En lätt slipning om 40 drag med liten magnet fixade detta.

Slutresultat:

Slutres_a-vinge

Fig. 3 Slutresultat för denna omgång.

Notera hur området 2-3 kH har stigit kraftigt jämfört med utgångspunkten.

 

 

 

 

Exempel på justering av en Hardangerfiol

15/01/2015

Jag deltog i år folkmusikkryssningen Folklandia från Helsingfors – Tallinn – Helsingfors. Fiolbyggarna i Finland (Suomen viulunrakentajat Ry där jag är medlem) hade ett krypin tillsammans med andra instrumentbyggare. Det blev mycket diskussion kring fiolbygge, lackering och naturligtvis fioltrimning som är det sista skedet i byggprocessen.

Min ”sockerfiol” byggd på kinesiskt halvfabrikat fanns med och fiolen uppskattades tydligen ljudmässigt bl.a. av föreningens ordförande yrkesviolinisten Simo Wuoristo … trots ett onödigt mekaniskt fel som gått genom kvalitetskontrollen. Översadeln var alltför låg på E-sidan vilket gav klirr då man knäppte på tom e-sträng. Problemet var lätt att åtgärda genom lätt sickling av greppbrädan.

Jag spelar i allmänhet på en kinesisk hardangerfiol som nu råkade få kommentaren ”det är antagligen det sämsta instrumentet som kunde provspelas 😉 ”. Faktum är att detta instrument var något torrt i tonen främst på G- och D-strängarna. Kommentaren fick mig att (äntligen?) göra något åt det instrument jag själv spelar på. Den här artikeln handlar om vad jag gjorde och vilket resultatet blev.

P1040107

Det här är den kinesiska hardangerfiol övningen gäller …

 

Problem jag ville åtgärda

Tonen på G och D-strängarna var torr/sträv och allmänt något tråkig. Strängarna jag använder är Pirastro Tonica som ger en något ljusare ton än Thomastic Dominant. Jag har aldrig använt traditionella sensträngar för min hardangerfiol. A- och E-strängarna klingade men en bredare klang vore önskvärd. Då jag knackade runt på bottenplattans rimgmod kunde jag tydligt höra att plattan inte uppförde sig normalt. Tonen var högst mitt på plattan vid C-bågarna och sjönk i riktning mot stränghållartappen och i riktning mot halsen. Tonen vid ringmoden nod nere ungefär tvärs över kroppen där den är bredast (något nedåt) låg betydligt lägre än knacktonerna i bottnen vid c-bågarna. Samma problem fanns uppe vid halsen d.v.s. ringmodens knackton vid noden var låg i förhållande till motsvarande ton vid C-bågarna.

Jag har upptäckt att om knacktonen är ungefär lika då man knackar sig sunt hela ringmoden så ringer också bottnen korrekt.  Min uppfattning är att man kan jämföra situationen med ett ostämt eller stämt banjomembran. Om tonhöjden är olika då man knackar sig runt membranet så klingar det inte. Lösningen var alltså att höja knacktonen i nodpunkterna uppe och nere så att de bättre skulle passa ihop med knacktonerna vid C-bågarna. Knacktonen kan höjas genom att slipa området runt/på nodlinjen. Eftersom instrumentet är lackar och snyggt utsirat med tuschmönster är det självklart att man inte kan slipa från utsidan eftersom man då skadar det som gör instrumentet speciellt d.v.s. lackarbetet och figurerna. Lösningen är att slipa från insidan med hjälp av magnetverktyg (verktygen finns beskrivna i andra artiklar).

Jag slipade den nedre nodlinjen ca. 700 drag fram/tillbaka och den övre ca. 900 drag. Provslipning (gjord tidigare) indikerar att ett slipdrag avlägsnar ca. 0.1 um trämaterial. Slipningen bör alltså ha tunnat av nodområdena med ca. 70 um respektive 90 um eller uttryck i millimeter ca. 0.07 mm respektive 0.09 mm. Slipningen gjordes i flera steg så att instrumentet spelades mellan varje slipningssteg. En skala spelades från i första lägets låga G upp till A på E-strängen. Instrumentet tonkaraktär ändrade tydligt så att torrheten försvann och tonen fick mera ”karaktär/klang”. Jag tunnade också av stallet upptill en aning vilket förbättrar diskanten genom att stallets grundresonans då stiger.

Bilderna nedan är skapade så att jag klippte ut tonerna som spelades på en sträng och beräknade ett spektrum före/efter.

Notera att skalan i höjdled är 3 dB d.v.s. ett skalsteg motsvarar en fördubbling av tonstyrkan. Eftersom det mänskliga örats känslighet är logaritmiskt så motsvarar ett steg ungefär vad örat kan uppfatta som en förändring.

G-strängen

G_start

Fig. 1 G-strängen före justering.

G_justerad_fig13

Fig. 2 G-strängen justerad.

Skillnaden mellan spektren är inte stor. Då man tar strängens grundton som referens (200 Hz) så ser man dock att området 2-3 kHz ligger 3-5 dB högre vilket ger tonen hörbart mera brillians.

D-strängen

D-sträng_start_fig14

Fig. 3 D-strängen före slipning.

D-sträng_final_fig15

Fig. 4 D-strängen efter slipning.

Skillnaden mellan spektren är mycket liten. Min uppfattning är dock att strängen klingar bättre efter justering. Mera must i klangen. Eventuellt är området 2-3 kHz något jämnare efter justeringen.

A-sträng_start_fig16

Fig. 5 A-strängen före justering.

 

A-strän_justerad_fig17

Fig. 6 A-strängen efter justering.

Notera hur det börjar växa fram en ”buckla” vid 5-7 kHz.

E-sträng_start_fig18

Fig. 7 E-strängen före justering.

E-sträng_justerad_fig19

Fig. 8 E-strängen efter justering.

Området 2.5 – 4 kHz har stigit vilket ger mera brillians på E-strängen. Skillnaderna är inte stora men tydligt hörbara.

Det gäller nu att låta instrumentet ”sätta sig” en tid. Vid behov kör jag en ny justeringsomgång senare. Notera att ett instrument tydligt reagerar på luftens fuktighet. Det är inte en god ide att försöka justera instrumentet ofta eftersom det kan sluta med katastrof. All slipning som görs är av den arten att det inte går att backa om man inte gillar resultatet. Det gäller alltså att gå mycket försiktigt fram med mycket spelande och lyssnande mellan varje steg.

Vetenskap och förutfattade meningar

03/11/2014

Alla ”vet” idag att universum har blivit till genom ”Den stora smällen” eller ”Big Bang”. Tron på universums tillblivelse genom ”big bang” bygger på ett enkelt observerbart fenomen som upptäcktes av astronomen Edvin Hubble 1929. Tanken på ett expanderande universum skapades av Georges Lemaitre som förutom den då relativt nya relativitetsteorin också som katosk präst strävade att förena fysiken med skapelseberättelsen.

Edvin Hubble upptäckte att allmänt taget alla mycket avlägsna objekt verkade vara rödförskjutna d.v.s. ljuset från en fjärran galax är rödare än ljuset från en närliggande galax. Rödförskjutningen betyder inte att vi endast ser rött ljus från galaxen utan allt ljus t.ex. en blå spektrallinje i spektret från en avlägsen galax inte längre ligger på samma plats i spektret utan den har förskjutits mot längre ”rödare” våglängder. Ursprungligen ”röda” spektrallinjer förskjuts mot infrarött .

Då man använde specifika typer av supernovor som ”standard” ljuskällor d.v.s. man antog att supernovorna var ungefär lika ljuskraftiga så kunde man enkelt beräkna avståndet till en avlägsen supernova då man vet att ljusstyrkan avtar med kvadraten på avståndet. Genom att studera spektret från den avlägsna galaxen och hur mycket ljuset var rödförskjutet kunde man, om man antog att rödförskjutningen var en följd av en dopplerförskjutning, enkelt beräkna hur snabbt den avlägsna galaxen/ljuskällan avlägsnar sig från oss. Vår standardljuskälla, supernovan, ger oss avståndet och rödförskjutningen ger oss hastigheten.

Då man studerar rödförskjutningen i olika riktningar så ser man att avlägsna galaxer i alla riktningar sett från jorden är rödförskjutna och således rör sig bort ifrån oss med en hastighet som är större ju avlägsnare objektet är.

Ovanstående resonemang verkar, hoppas jag, klart och enkelt att förstå. Betyder det här att ”big bang” är ett bevisat faktum? Svaret är ganska entydigt nej!

Ovanstående resonemang utgår från att det inte finns alternativa förklaringar till rödförskjutningen … vilket det finns. En doppler (hastighetsberoende) rödförsjutning leder till intressanta konflikter.

På 1960-talet upptäckte man underliga radiokällor som man trodde var stjärnor men som visade sig ha mycket underliga optiska spektra. Kvasarerna var extremt kraftigt rödförskjutna vilket gjorde dem extremt avlägsna och eftersom man kunde se dem trots det extrema avståndet så måste de ju vara mycket lyskraftiga. I vikipedia finner vi:

Kvasar

Kvasaren 3C 273 på ett foto taget av Hubble-teleskopet

En konstnärs tolkning av en kvasargalax

En kvasar (av engelskans quasi-stellar radio source, quasar) är en extremt ljusstark och avlägsen aktiv galaxkärna. Den överglänser sin värdgalax så mycket, att denna inte tidigare har kunnat observeras. Först med hjälp av CCD-teknik och senare adaptiv optik har många värdgalaxer kunnat påvisas.

Detta energiutstrålande objekt i universum avger enorma mängder elektromagnetisk strålning från radiovågor till gammastrålning. Det är faktiskt inte ovanligt för en enskild kvasar att utstråla energi, motsvarande flera hundra vanliga galaxer. Själva kvasaren är ett förhållandevis litet objekt, men många ligger på ofantligt stora avstånd från jorden.

Med ett så stort energiflöde krävs en mycket kraftfull energikälla och inga andra teorier än att kvasarer är aktiva galaxkärnor har framlagts, som förklarar ett fenomen av denna magnitud. Det rör sig alltså om ett supermassivt kompakt objekt omgivet av en ackretionsskiva i centrum av en galax. Strålningen kommer sig av att gas som närmar sig det förmenta svarta hålet hettas upp i ackretionsskivan och genom jetstrålar avger enorma mängder energi.

Kvasarer var länge de objekt som hade de högsta rödförskjutningar som uppmätts. Rekordet Z=7,085 har ULAS J1120+0641 som upptäcktes 29 juni 2011.[1] Siffran har dock numera överträffats av flera galaxer.

Man accepterar utan att blinka ett objekt som kräver en energiproduktion hundra gånger större än hela vår galax energiproduktion. Notera också att man konstaterar att inga andra teorier för vad kvasarer har framlagts. Faktum är att vi igen ser hur det koncensusdrivna vetenskapssamfundet fungerar. Det finns utan tvivel andra alternativ och dessutom förklaringar som gör kvasarer till normala stellära objekt som inte längre är extremt ljusstarka.

Halton C. Arp är känd för att ha katalogiserat galaxer. I samband med detta arbete upptäckte han att det i anslutning till många galaxer fanns kvasarer som verkade kopplade till ”modergalaxen” via synliga materiebryggor. Om Arps observation av kvasarer, med stor rödförskjutning,  kopplade till relativt närliggande galaxer med mycket mindre rödförskjutning stämmer så betyder det att kvasaren ligger rätt nära oss vilket leder till att energiproduktionen inte är extrem och problemet med kvasarer som producerar mera energi än hundra galaxer försvinner. Om man accepterar den här enkla lösningen så uppstår det dock ett nytt problem …

Om Arps observationer är korrekta så kan det hända att hela teorin gällande ”Big Bang” faller ihop som ett korthus eftersom då den observerade rödförskjutningen inte längre med säkerhet är en följd av avlägsna objekts rörelse. Om rödförskjutningen inte, i huvudsak,  beror på universums expansion så kommer hundratals kosmologers livsarbete att vara bortkastat. Den naturliga reaktionen är då att vägra se på data i likhet med motståndarna mot Giordano Bruno och Galilei och hoppas att problemet försvinner.

Det finns ett talesätt som säger att vetenskapen går framåt via gamla professorers begravningar.

Nedanstående rätt långa video ger en intressant inblick i problematiken.

Åldringar och C-vitaminbrist

21/10/2014

Alla som har nära kontakt med åldringar vet att medicinpaketet de förväntas stoppa i sig dagligen kan vara skrämmande eller imponerande beroende av hur man egenligen ser på saken.

En nära släkting dog för ungefär ett år sedan på ett på slutändan mycket snabbt och barmhärtigt sätt. Under det sista året var han extremt trött, stora blånader uppträdde ganska slumpmässigt på olika delar av kroppen och den sista morgonen såg det ut som om han hade svettats blod d.v.s. det rann blod vid t.ex. halsen utan att det fanns synliga sår. Kanske tjugo timmar senare var han död.

Den närmaste kretsen antog att det vi såg var en följd av t.ex. överdosering av antikoagulerande s.k. bloduttunnande medel givna för att undvika blodpropp. Man kan ju då lätt anta att en bieffekt skulle vara blånader och vid extrem överdosering eventuellt t.o.m. yttre blödningar. Jag köpte själv det här resonemanget fram till för ett par dagar sedan då jag gjorde breda sökningar kring cancer sedd som en kombination av en eller flera bristsjukdomar. Det finns flera välkända bristsjukdomar som den dåtida läkarvetenskapen stod handfallna inför eftersom man sökte förklaring i infektion eller liknande och inte i kost. Två exempel ges nedan:

Skörbjugg var en fruktad sjukdom som kunde slå ut 50% av deltagarna i ett korståg, en stor del av besättningen på ett fartyg som gjorde en lång resa över öppet hav eller en polarexpedition. Det tog ca. 200 år för läkarvetenskapen att fullt acceptera att det var fråga om en bristsjukdom. Den brittiska flottan var bland de första att ta i bruk den nya kunskapen genom att ställa upp regler att cittrusfrukter skulle tas med på alla skepp. Resultatet av undermedicinen mot skörbjugg var världsherravälde över haven eftersom man kunde göra extremt långa resor utan att besättningen dog. Så småningom accepterades orsaken till skörbjugg och sjukdomen blev ett minne blott som ingen mera ens tänker på!

Dödligheten i perniciös anemi låg på 98 – 99% trots att man försökte bota sjukdomen med alla tänkbara läkemedel inklusive arsenik och kvicksilver. Man hade en palett på nästan 200 olika mediciner som användes mot sjukdomen men verkan var inte speciellt bra eftersom nästan alla patienter dog. Det väckte en viss uppståndelse då en grupp forskare i början av 1900-talet kunde visa att man kunde bota motsvarigheten till perniciös anemi hos hundar genom att mata dem med rå lever. Argumentet mot leverkuren var att man har tillgång till en mängd mediciner och att det inte är rätt att skicka patienten till slaktaren runt hörnet. Tråkigt nog glömde man att patienterna trots de många medicinalternativen hade en extremt hög dödlighet. De patienter som trodde på rådet att de skulle springa till slaktaren och köpa färsk lever och äta den möjligast rå överlevde. Orsaken var att lever innehåller mycket vitamin B12 och brist på vitamin B12 kan ge perniciös anemi som obehandlad leder till döden.

Det finns också andra exempel men dessa två är nog för den här berättelsen. Eftersom jag sökte ledtrådar för kostrelaterade orsaker till cancer gjorde jag naturligtvis sökningar också på ovanstående bristsjukdomar för att eventuellt få grepp om något återkommande ”mönster”.

I Wikipedia kan vi läsa http://sv.wikipedia.org/wiki/Sk%C3%B6rbjugg :

”Sjukdomen var ett mycket allvarligt problem under européernas upptäcktsresor från 1400-talet, då tillgång till C-vitaminrik föda var begränsad. Femtio procent eller mer av sjömännen kunde dö av skörbjugg under en expedition. Den engelske marinläkaren James Lind kunde 1747 visa att juice från lime botade skörbjugg. Limejuice blev snabbt obligatoriskt på engelska flottans fartyg, och ledde även till engelsmännens öknamn limey.”

Tandkött som angripits av skörbjugg (från Wikipedia)

Om C-vitaminets betydelse sägs det:

”Vitamin C behövs för att proteinet kollagen, som finns i huden, ska bildas normalt. Vitamin C behövs som reducerande medel då molekylärt syre används för att hydroxylera prolin och lysin så att kollagenfibrerna skall kunna korslänkas till varandra. Allvarlig brist av vitamin C leder således till att mängden kollagen i bindväven minskar och blir av dålig kvalitet.”

Om förekomsten av skörbjugg sägs det:

”Skörbjugg är en bristsjukdom som uppstår till följd av för lågt intag av vitamin C. Trots att det ofta betraktas som ett glömt, historiskt problem eller som ett tillstånd som bara drabbar fattiga personer, är det fortfarande en realitet i västvärlden.”

Oops! Sjukdomen är efter mer än trehundra år fortfarande en realitet i västvärlden? Var förekommer då skörbjugg idag?

”Riskgrupper att utveckla skörbjugg är i första hand människor med otillräckligt intag av vitamin C, till följd av dålig kosthållning, ätstörningar, alkoholism, narkomani. Ämnesomsättningssjukdomar och malabsorption kan orsaka skörbjugg. Tillståndet förekommer också hos kroniskt sjuka personer, personer som är inlagda på sjukhus, människor med psykiska störningar, och äldre.”[1][2]

Symptomen på skörbjugg är:

”Det mest omtalade symptomet på skörbjugg är blödningar i tandkött; det senare utvecklas i svåra fall till kraftig tandköttsinflammation och tandlossning, som kan omöjliggöra tuggning. I svåra fall tillkommer också muskelförtvining, extrem trötthet och förstoppning.

Innan det gått så långt kan dock huden uppvisa flera symptom. Hyperkeratos i hårsäckarna, små lokala blödningar vid hårsäckarna, och kroppshår som börjar bilda lockar eller böja sig, är några vanliga, tidiga tecken på C-vitaminbrist. Vid skörbjugg är det också lättare att få blåmärken.”[2][3]

Personen jag nämnde om ovan hade inga egna tänder varför antagligen tandsymptom inte gick att se … däremot kunde man tydligt periodvis se en extrem trötthet, stora blåmärken som uppträdde ”utan orsak” på olika delar av kroppen, svårartad förstoppning som krävde sjukhusvård och muskler som blev så svaga att patienten inte utan hjälp kunde sätta sig upp i sängen. På slutet kunde man se ”blodsvettning” där det slumpmässigt blödde på huden utan synliga sår.

Min personliga tolkning är att det här var ett klart fall av skörbjugg som sjukvårdssystemet totalt missade trots att patienten var många månader på sjukhus. En åldring förväntas vara svag och sjuk och då finns det ju inte någon orsak till att försöka hitta orsaken till symptomen.

Varför har jag skrivit det här inlägget?

Jag har skrivit den här artikeln för att göra åldringarnas stödpersoner uppmärksamma på att det kan vara skäl att titta noga på vad åldringar äter i verkligheten. Färdig fabrikslagad mat är inte nödvändigtvis det bästa för en åldring också om det kombineras med en tomatklyfta och några tunna skivor gurka. Min uppfattning är att det skulle löna sig att lägga till en liten dos C-vitamin i medicinarsenalen även om antalet mediciner i värsta fall ökar från 20 till 21. C-vitamin är extremt svårt att överdosera och vitaminen är billig. Det finns ingen anledning över huvudtaget att ge åldringar skörbjugg i vår upplysta värld!

 


Pointman's

A lagrange point in life

THE HOCKEY SCHTICK

Lars Silén: Reflex och Spegling

NoTricksZone

Lars Silén: Reflex och Spegling

Big Picture News, Informed Analysis

Canadian journalist Donna Laframboise. Former National Post & Toronto Star columnist, past vice president of the Canadian Civil Liberties Association.

JoNova

Lars Silén: Reflex och Spegling

Climate Audit

by Steve McIntyre

Musings from the Chiefio

Techno bits and mind pleasers

Bishop Hill

Lars Silén: Reflex och Spegling

Watts Up With That?

The world's most viewed site on global warming and climate change

TED Blog

The TED Blog shares news about TED Talks and TED Conferences.

Larsil2009's Blog

Lars Silén: Reflex och Spegling